HDK
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
LeafManager.h
Go to the documentation of this file.
1 ///////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (c) 2012-2018 DreamWorks Animation LLC
4 //
5 // All rights reserved. This software is distributed under the
6 // Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
7 //
8 // Redistributions of source code must retain the above copyright
9 // and license notice and the following restrictions and disclaimer.
10 //
11 // * Neither the name of DreamWorks Animation nor the names of
12 // its contributors may be used to endorse or promote products derived
13 // from this software without specific prior written permission.
14 //
15 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
20 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 // IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
27 // LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
28 //
29 ///////////////////////////////////////////////////////////////////////////
30 
31 /// @file LeafManager.h
32 ///
33 /// @brief A LeafManager manages a linear array of pointers to a given tree's
34 /// leaf nodes, as well as optional auxiliary buffers (one or more per leaf)
35 /// that can be swapped with the leaf nodes' voxel data buffers.
36 /// @details The leaf array is useful for multithreaded computations over
37 /// leaf voxels in a tree with static topology but varying voxel values.
38 /// The auxiliary buffers are convenient for temporal integration.
39 /// Efficient methods are provided for multithreaded swapping and synching
40 /// (i.e., copying the contents) of these buffers.
41 
42 #ifndef OPENVDB_TREE_LEAFMANAGER_HAS_BEEN_INCLUDED
43 #define OPENVDB_TREE_LEAFMANAGER_HAS_BEEN_INCLUDED
44 
45 #include <openvdb/Types.h>
46 #include "TreeIterator.h" // for CopyConstness
47 #include <tbb/blocked_range.h>
48 #include <tbb/parallel_for.h>
49 #include <tbb/parallel_reduce.h>
50 #include <functional>
51 #include <type_traits>
52 
53 
54 namespace openvdb {
56 namespace OPENVDB_VERSION_NAME {
57 namespace tree {
58 
59 namespace leafmgr {
60 
61 //@{
62 /// Useful traits for Tree types
63 template<typename TreeT> struct TreeTraits {
64  static const bool IsConstTree = false;
65  using LeafIterType = typename TreeT::LeafIter;
66 };
67 template<typename TreeT> struct TreeTraits<const TreeT> {
68  static const bool IsConstTree = true;
69  using LeafIterType = typename TreeT::LeafCIter;
70 };
71 //@}
72 
73 } // namespace leafmgr
74 
75 
76 /// This helper class implements LeafManager methods that need to be
77 /// specialized for const vs. non-const trees.
78 template<typename ManagerT>
80 {
81  using RangeT = typename ManagerT::RangeType;
82  using LeafT = typename ManagerT::LeafType;
83  using BufT = typename ManagerT::BufferType;
84 
85  static inline void doSwapLeafBuffer(const RangeT& r, size_t auxBufferIdx,
86  LeafT** leafs, BufT* bufs, size_t bufsPerLeaf)
87  {
88  for (size_t n = r.begin(), m = r.end(), N = bufsPerLeaf; n != m; ++n) {
89  leafs[n]->swap(bufs[n * N + auxBufferIdx]);
90  }
91  }
92 };
93 
94 
95 ////////////////////////////////////////
96 
97 
98 /// @brief This class manages a linear array of pointers to a given tree's
99 /// leaf nodes, as well as optional auxiliary buffers (one or more per leaf)
100 /// that can be swapped with the leaf nodes' voxel data buffers.
101 /// @details The leaf array is useful for multithreaded computations over
102 /// leaf voxels in a tree with static topology but varying voxel values.
103 /// The auxiliary buffers are convenient for temporal integration.
104 /// Efficient methods are provided for multithreaded swapping and sync'ing
105 /// (i.e., copying the contents) of these buffers.
106 ///
107 /// @note Buffer index 0 denotes a leaf node's internal voxel data buffer.
108 /// Any auxiliary buffers are indexed starting from one.
109 template<typename TreeT>
111 {
112 public:
113  using TreeType = TreeT;
114  using ValueType = typename TreeT::ValueType;
115  using RootNodeType = typename TreeT::RootNodeType;
116  using NonConstLeafType = typename TreeType::LeafNodeType;
120  using NonConstBufferType = typename LeafType::Buffer;
122  using RangeType = tbb::blocked_range<size_t>; // leaf index range
123  static const Index DEPTH = 2; // root + leaf nodes
124 
126 
127  class LeafRange
128  {
129  public:
130  class Iterator
131  {
132  public:
133  Iterator(const LeafRange& range, size_t pos): mRange(range), mPos(pos)
134  {
135  assert(this->isValid());
136  }
137  Iterator(const Iterator&) = default;
138  Iterator& operator=(const Iterator&) = default;
139  /// Advance to the next leaf node.
140  Iterator& operator++() { ++mPos; return *this; }
141  /// Return a reference to the leaf node to which this iterator is pointing.
142  LeafType& operator*() const { return mRange.mLeafManager.leaf(mPos); }
143  /// Return a pointer to the leaf node to which this iterator is pointing.
144  LeafType* operator->() const { return &(this->operator*()); }
145  /// @brief Return the nth buffer for the leaf node to which this iterator is pointing,
146  /// where n = @a bufferIdx and n = 0 corresponds to the leaf node's own buffer.
147  BufferType& buffer(size_t bufferIdx)
148  {
149  return mRange.mLeafManager.getBuffer(mPos, bufferIdx);
150  }
151  /// Return the index into the leaf array of the current leaf node.
152  size_t pos() const { return mPos; }
153  /// Return @c true if the position of this iterator is in a valid range.
154  bool isValid() const { return mPos>=mRange.mBegin && mPos<=mRange.mEnd; }
155  /// Return @c true if this iterator is not yet exhausted.
156  bool test() const { return mPos < mRange.mEnd; }
157  /// Return @c true if this iterator is not yet exhausted.
158  operator bool() const { return this->test(); }
159  /// Return @c true if this iterator is exhausted.
160  bool empty() const { return !this->test(); }
161  bool operator!=(const Iterator& other) const
162  {
163  return (mPos != other.mPos) || (&mRange != &other.mRange);
164  }
165  bool operator==(const Iterator& other) const { return !(*this != other); }
166  const LeafRange& leafRange() const { return mRange; }
167 
168  private:
169  const LeafRange& mRange;
170  size_t mPos;
171  };// end Iterator
172 
173  LeafRange(size_t begin, size_t end, const LeafManager& leafManager, size_t grainSize=1)
174  : mEnd(end)
175  , mBegin(begin)
176  , mGrainSize(grainSize)
177  , mLeafManager(leafManager)
178  {
179  }
180 
181  Iterator begin() const {return Iterator(*this, mBegin);}
182 
183  Iterator end() const {return Iterator(*this, mEnd);}
184 
185  size_t size() const { return mEnd - mBegin; }
186 
187  size_t grainsize() const { return mGrainSize; }
188 
189  const LeafManager& leafManager() const { return mLeafManager; }
190 
191  bool empty() const {return !(mBegin < mEnd);}
192 
193  bool is_divisible() const {return mGrainSize < this->size();}
194 
195  LeafRange(LeafRange& r, tbb::split)
196  : mEnd(r.mEnd)
197  , mBegin(doSplit(r))
198  , mGrainSize(r.mGrainSize)
199  , mLeafManager(r.mLeafManager)
200  {
201  }
202 
203  private:
204  size_t mEnd, mBegin, mGrainSize;
205  const LeafManager& mLeafManager;
206 
207  static size_t doSplit(LeafRange& r)
208  {
209  assert(r.is_divisible());
210  size_t middle = r.mBegin + (r.mEnd - r.mBegin) / 2u;
211  r.mEnd = middle;
212  return middle;
213  }
214  };// end of LeafRange
215 
216  /// @brief Constructor from a tree reference and an auxiliary buffer count
217  /// @note The default is no auxiliary buffers
218  LeafManager(TreeType& tree, size_t auxBuffersPerLeaf=0, bool serial=false)
219  : mTree(&tree)
220  , mLeafCount(0)
221  , mAuxBufferCount(0)
222  , mAuxBuffersPerLeaf(auxBuffersPerLeaf)
223  , mLeafs(nullptr)
224  , mAuxBuffers(nullptr)
225  , mTask(0)
226  , mIsMaster(true)
227  {
228  this->rebuild(serial);
229  }
230 
231  /// @brief Construct directly from an existing array of leafnodes.
232  /// @warning The leafnodes are implicitly assumed to exist in the
233  /// input @a tree.
235  size_t auxBuffersPerLeaf=0, bool serial=false)
236  : mTree(&tree)
237  , mLeafCount(end-begin)
238  , mAuxBufferCount(0)
239  , mAuxBuffersPerLeaf(auxBuffersPerLeaf)
240  , mLeafs(new LeafType*[mLeafCount])
241  , mAuxBuffers(nullptr)
242  , mTask(0)
243  , mIsMaster(true)
244  {
245  size_t n = mLeafCount;
246  LeafType **target = mLeafs, **source = begin;
247  while (n--) *target++ = *source++;
248  if (auxBuffersPerLeaf) this->initAuxBuffers(serial);
249  }
250 
251  /// Shallow copy constructor called by tbb::parallel_for() threads
252  ///
253  /// @note This should never get called directly
254  LeafManager(const LeafManager& other)
255  : mTree(other.mTree)
256  , mLeafCount(other.mLeafCount)
257  , mAuxBufferCount(other.mAuxBufferCount)
258  , mAuxBuffersPerLeaf(other.mAuxBuffersPerLeaf)
259  , mLeafs(other.mLeafs)
260  , mAuxBuffers(other.mAuxBuffers)
261  , mTask(other.mTask)
262  , mIsMaster(false)
263  {
264  }
265 
266  virtual ~LeafManager()
267  {
268  if (mIsMaster) {
269  delete [] mLeafs;
270  delete [] mAuxBuffers;
271  }
272  }
273 
274  /// @brief (Re)initialize by resizing (if necessary) and repopulating the leaf array
275  /// and by deleting existing auxiliary buffers and allocating new ones.
276  /// @details Call this method if the tree's topology, and therefore the number
277  /// of leaf nodes, changes. New auxiliary buffers are initialized with copies
278  /// of corresponding leaf node buffers.
279  void rebuild(bool serial=false)
280  {
281  this->initLeafArray();
282  this->initAuxBuffers(serial);
283  }
284  //@{
285  /// Repopulate the leaf array and delete and reallocate auxiliary buffers.
286  void rebuild(size_t auxBuffersPerLeaf, bool serial=false)
287  {
288  mAuxBuffersPerLeaf = auxBuffersPerLeaf;
289  this->rebuild(serial);
290  }
291  void rebuild(TreeType& tree, bool serial=false)
292  {
293  mTree = &tree;
294  this->rebuild(serial);
295  }
296  void rebuild(TreeType& tree, size_t auxBuffersPerLeaf, bool serial=false)
297  {
298  mTree = &tree;
299  mAuxBuffersPerLeaf = auxBuffersPerLeaf;
300  this->rebuild(serial);
301  }
302  //@}
303  /// @brief Change the number of auxiliary buffers.
304  /// @details If auxBuffersPerLeaf is 0, all existing auxiliary buffers are deleted.
305  /// New auxiliary buffers are initialized with copies of corresponding leaf node buffers.
306  /// This method does not rebuild the leaf array.
307  void rebuildAuxBuffers(size_t auxBuffersPerLeaf, bool serial=false)
308  {
309  mAuxBuffersPerLeaf = auxBuffersPerLeaf;
310  this->initAuxBuffers(serial);
311  }
312  /// @brief Remove the auxiliary buffers, but don't rebuild the leaf array.
313  void removeAuxBuffers() { this->rebuildAuxBuffers(0); }
314 
315  /// @brief Remove the auxiliary buffers and rebuild the leaf array.
317  {
318  this->removeAuxBuffers();
319  this->initLeafArray();
320  }
321 
322  /// @brief Return the total number of allocated auxiliary buffers.
323  size_t auxBufferCount() const { return mAuxBufferCount; }
324  /// @brief Return the number of auxiliary buffers per leaf node.
325  size_t auxBuffersPerLeaf() const { return mAuxBuffersPerLeaf; }
326 
327  /// @brief Return the number of leaf nodes.
328  size_t leafCount() const { return mLeafCount; }
329 
330  /// @brief Return the number of active voxels in the leaf nodes.
331  /// @note Multi-threaded for better performance than Tree::activeLeafVoxelCount
333  {
334  return tbb::parallel_reduce(this->leafRange(), Index64(0),
335  [] (const LeafRange& range, Index64 sum) -> Index64 {
336  for (const auto& leaf: range) { sum += leaf.onVoxelCount(); }
337  return sum;
338  },
339  [] (Index64 n, Index64 m) -> Index64 { return n + m; });
340  }
341 
342  /// Return a const reference to tree associated with this manager.
343  const TreeType& tree() const { return *mTree; }
344 
345  /// Return a reference to the tree associated with this manager.
346  TreeType& tree() { return *mTree; }
347 
348  /// Return a const reference to root node associated with this manager.
349  const RootNodeType& root() const { return mTree->root(); }
350 
351  /// Return a reference to the root node associated with this manager.
352  RootNodeType& root() { return mTree->root(); }
353 
354  /// Return @c true if the tree associated with this manager is immutable.
355  bool isConstTree() const { return this->IsConstTree; }
356 
357  /// @brief Return a pointer to the leaf node at index @a leafIdx in the array.
358  /// @note For performance reasons no range check is performed (other than an assertion)!
359  LeafType& leaf(size_t leafIdx) const { assert(leafIdx<mLeafCount); return *mLeafs[leafIdx]; }
360 
361  /// @brief Return the leaf or auxiliary buffer for the leaf node at index @a leafIdx.
362  /// If @a bufferIdx is zero, return the leaf buffer, otherwise return the nth
363  /// auxiliary buffer, where n = @a bufferIdx - 1.
364  ///
365  /// @note For performance reasons no range checks are performed on the inputs
366  /// (other than assertions)! Since auxiliary buffers, unlike leaf buffers,
367  /// might not exist, be especially careful when specifying the @a bufferIdx.
368  /// @note For const trees, this method always returns a reference to a const buffer.
369  /// It is safe to @c const_cast and modify any auxiliary buffer (@a bufferIdx > 0),
370  /// but it is not safe to modify the leaf buffer (@a bufferIdx = 0).
371  BufferType& getBuffer(size_t leafIdx, size_t bufferIdx) const
372  {
373  assert(leafIdx < mLeafCount);
374  assert(bufferIdx == 0 || bufferIdx - 1 < mAuxBuffersPerLeaf);
375  return bufferIdx == 0 ? mLeafs[leafIdx]->buffer()
376  : mAuxBuffers[leafIdx * mAuxBuffersPerLeaf + bufferIdx - 1];
377  }
378 
379  /// @brief Return a @c tbb::blocked_range of leaf array indices.
380  ///
381  /// @note Consider using leafRange() instead, which provides access methods
382  /// to leaf nodes and buffers.
383  RangeType getRange(size_t grainsize = 1) const { return RangeType(0, mLeafCount, grainsize); }
384 
385  /// Return a TBB-compatible LeafRange.
386  LeafRange leafRange(size_t grainsize = 1) const
387  {
388  return LeafRange(0, mLeafCount, *this, grainsize);
389  }
390 
391  /// @brief Swap each leaf node's buffer with the nth corresponding auxiliary buffer,
392  /// where n = @a bufferIdx.
393  /// @return @c true if the swap was successful
394  /// @param bufferIdx index of the buffer that will be swapped with
395  /// the corresponding leaf node buffer
396  /// @param serial if false, swap buffers in parallel using multiple threads.
397  /// @note Recall that the indexing of auxiliary buffers is 1-based, since
398  /// buffer index 0 denotes the leaf node buffer. So buffer index 1 denotes
399  /// the first auxiliary buffer.
400  bool swapLeafBuffer(size_t bufferIdx, bool serial = false)
401  {
402  namespace ph = std::placeholders;
403  if (bufferIdx == 0 || bufferIdx > mAuxBuffersPerLeaf || this->isConstTree()) return false;
404  mTask = std::bind(&LeafManager::doSwapLeafBuffer, ph::_1, ph::_2, bufferIdx - 1);
405  this->cook(serial ? 0 : 512);
406  return true;//success
407  }
408  /// @brief Swap any two buffers for each leaf node.
409  /// @note Recall that the indexing of auxiliary buffers is 1-based, since
410  /// buffer index 0 denotes the leaf node buffer. So buffer index 1 denotes
411  /// the first auxiliary buffer.
412  bool swapBuffer(size_t bufferIdx1, size_t bufferIdx2, bool serial = false)
413  {
414  namespace ph = std::placeholders;
415  const size_t b1 = std::min(bufferIdx1, bufferIdx2);
416  const size_t b2 = std::max(bufferIdx1, bufferIdx2);
417  if (b1 == b2 || b2 > mAuxBuffersPerLeaf) return false;
418  if (b1 == 0) {
419  if (this->isConstTree()) return false;
420  mTask = std::bind(&LeafManager::doSwapLeafBuffer, ph::_1, ph::_2, b2-1);
421  } else {
422  mTask = std::bind(&LeafManager::doSwapAuxBuffer, ph::_1, ph::_2, b1-1, b2-1);
423  }
424  this->cook(serial ? 0 : 512);
425  return true;//success
426  }
427 
428  /// @brief Sync up the specified auxiliary buffer with the corresponding leaf node buffer.
429  /// @return @c true if the sync was successful
430  /// @param bufferIdx index of the buffer that will contain a
431  /// copy of the corresponding leaf node buffer
432  /// @param serial if false, sync buffers in parallel using multiple threads.
433  /// @note Recall that the indexing of auxiliary buffers is 1-based, since
434  /// buffer index 0 denotes the leaf node buffer. So buffer index 1 denotes
435  /// the first auxiliary buffer.
436  bool syncAuxBuffer(size_t bufferIdx, bool serial = false)
437  {
438  namespace ph = std::placeholders;
439  if (bufferIdx == 0 || bufferIdx > mAuxBuffersPerLeaf) return false;
440  mTask = std::bind(&LeafManager::doSyncAuxBuffer, ph::_1, ph::_2, bufferIdx - 1);
441  this->cook(serial ? 0 : 64);
442  return true;//success
443  }
444 
445  /// @brief Sync up all auxiliary buffers with their corresponding leaf node buffers.
446  /// @return true if the sync was successful
447  /// @param serial if false, sync buffers in parallel using multiple threads.
448  bool syncAllBuffers(bool serial = false)
449  {
450  namespace ph = std::placeholders;
451  switch (mAuxBuffersPerLeaf) {
452  case 0: return false;//nothing to do
453  case 1: mTask = std::bind(&LeafManager::doSyncAllBuffers1, ph::_1, ph::_2); break;
454  case 2: mTask = std::bind(&LeafManager::doSyncAllBuffers2, ph::_1, ph::_2); break;
455  default: mTask = std::bind(&LeafManager::doSyncAllBuffersN, ph::_1, ph::_2); break;
456  }
457  this->cook(serial ? 0 : 64);
458  return true;//success
459  }
460 
461  /// @brief Threaded method that applies a user-supplied functor
462  /// to each leaf node in the LeafManager.
463  ///
464  /// @details The user-supplied functor needs to define the methods
465  /// required for tbb::parallel_for.
466  ///
467  /// @param op user-supplied functor, see examples for interface details.
468  /// @param threaded optional toggle to disable threading, on by default.
469  /// @param grainSize optional parameter to specify the grainsize
470  /// for threading, one by default.
471  ///
472  /// @warning The functor object is deep-copied to create TBB tasks.
473  /// This allows the function to use non-thread-safe members
474  /// like a ValueAccessor.
475  ///
476  /// @par Example:
477  /// @code
478  /// // Functor to offset a tree's voxel values with values from another tree.
479  /// template<typename TreeType>
480  /// struct OffsetOp
481  /// {
482  /// using Accessor = tree::ValueAccessor<const TreeType>;
483  ///
484  /// OffsetOp(const TreeType& tree): mRhsTreeAcc(tree) {}
485  ///
486  /// template <typename LeafNodeType>
487  /// void operator()(LeafNodeType &lhsLeaf, size_t) const
488  /// {
489  /// const LeafNodeType *rhsLeaf = mRhsTreeAcc.probeConstLeaf(lhsLeaf.origin());
490  /// if (rhsLeaf) {
491  /// typename LeafNodeType::ValueOnIter iter = lhsLeaf.beginValueOn();
492  /// for (; iter; ++iter) {
493  /// iter.setValue(iter.getValue() + rhsLeaf->getValue(iter.pos()));
494  /// }
495  /// }
496  /// }
497  /// Accessor mRhsTreeAcc;
498  /// };
499  ///
500  /// // usage:
501  /// tree::LeafManager<FloatTree> leafNodes(lhsTree);
502  /// leafNodes.foreach(OffsetOp<FloatTree>(rhsTree));
503  ///
504  /// // A functor that performs a min operation between different auxiliary buffers.
505  /// template<typename LeafManagerType>
506  /// struct MinOp
507  /// {
508  /// using BufferType = typename LeafManagerType::BufferType;
509  ///
510  /// MinOp(LeafManagerType& leafNodes): mLeafs(leafNodes) {}
511  ///
512  /// template <typename LeafNodeType>
513  /// void operator()(LeafNodeType &leaf, size_t leafIndex) const
514  /// {
515  /// // get the first buffer
516  /// BufferType& buffer = mLeafs.getBuffer(leafIndex, 1);
517  ///
518  /// // min ...
519  /// }
520  /// LeafManagerType& mLeafs;
521  /// };
522  /// @endcode
523  template<typename LeafOp>
524  void foreach(const LeafOp& op, bool threaded = true, size_t grainSize=1)
525  {
526  LeafTransformer<LeafOp> transform(op);
527  transform.run(this->leafRange(grainSize), threaded);
528  }
529 
530  /// @brief Threaded method that applies a user-supplied functor
531  /// to each leaf node in the LeafManager. Unlike foreach
532  /// (defined above) this method performs a reduction on
533  /// all the leaf nodes.
534  ///
535  /// @details The user-supplied functor needs to define the methods
536  /// required for tbb::parallel_reduce.
537  ///
538  /// @param op user-supplied functor, see examples for interface details.
539  /// @param threaded optional toggle to disable threading, on by default.
540  /// @param grainSize optional parameter to specify the grainsize
541  /// for threading, one by default.
542  ///
543  /// @warning The functor object is deep-copied to create TBB tasks.
544  /// This allows the function to use non-thread-safe members
545  /// like a ValueAccessor.
546  ///
547  /// @par Example:
548  /// @code
549  /// // Functor to count the number of negative (active) leaf values
550  /// struct CountOp
551  /// {
552  /// CountOp() : mCounter(0) {}
553  /// CountOp(const CountOp &other) : mCounter(other.mCounter) {}
554  /// CountOp(const CountOp &other, tbb::split) : mCounter(0) {}
555  /// template <typename LeafNodeType>
556  /// void operator()(LeafNodeType &leaf, size_t)
557  /// {
558  /// typename LeafNodeType::ValueOnIter iter = leaf.beginValueOn();
559  /// for (; iter; ++iter) if (*iter < 0.0f) ++mCounter;
560  /// }
561  /// void join(const CountOp &other) {mCounter += other.mCounter;}
562  /// size_t mCounter;
563  /// };
564  ///
565  /// // usage:
566  /// tree::LeafManager<FloatTree> leafNodes(tree);
567  /// MinValueOp min;
568  /// leafNodes.reduce(min);
569  /// std::cerr << "Number of negative active voxels = " << min.mCounter << std::endl;
570  ///
571  /// @endcode
572  template<typename LeafOp>
573  void reduce(LeafOp& op, bool threaded = true, size_t grainSize=1)
574  {
575  LeafReducer<LeafOp> transform(op);
576  transform.run(this->leafRange(grainSize), threaded);
577  }
578 
579 
580  /// @brief Insert pointers to nodes of the specified type into the array.
581  /// @details The type of node pointer is defined by the type
582  /// ArrayT::value_type. If the node type is a LeafNode the nodes
583  /// are inserted from this LeafManager, else of the corresponding tree.
584  template<typename ArrayT>
585  void getNodes(ArrayT& array)
586  {
587  using T = typename ArrayT::value_type;
588  static_assert(std::is_pointer<T>::value, "argument to getNodes() must be a pointer array");
589  using LeafT = typename std::conditional<std::is_const<
590  typename std::remove_pointer<T>::type>::value, const LeafType, LeafType>::type;
591 
594  array.resize(mLeafCount);
595  for (size_t i=0; i<mLeafCount; ++i) array[i] = reinterpret_cast<T>(mLeafs[i]);
596  } else {
597  mTree->getNodes(array);
598  }
600  }
601 
602  /// @brief Insert node pointers of the specified type into the array.
603  /// @details The type of node pointer is defined by the type
604  /// ArrayT::value_type. If the node type is a LeafNode the nodes
605  /// are inserted from this LeafManager, else of the corresponding tree.
606  template<typename ArrayT>
607  void getNodes(ArrayT& array) const
608  {
609  using T = typename ArrayT::value_type;
610  static_assert(std::is_pointer<T>::value, "argument to getNodes() must be a pointer array");
611  static_assert(std::is_const<typename std::remove_pointer<T>::type>::value,
612  "argument to getNodes() must be an array of const node pointers");
613 
616  array.resize(mLeafCount);
617  for (size_t i=0; i<mLeafCount; ++i) array[i] = reinterpret_cast<T>(mLeafs[i]);
618  } else {
619  mTree->getNodes(array);
620  }
622  }
623 
624  /// @brief Generate a linear array of prefix sums of offsets into the
625  /// active voxels in the leafs. So @a offsets[n]+m is the offset to the
626  /// mth active voxel in the nth leaf node (useful for
627  /// user-managed value buffers, e.g. in tools/LevelSetAdvect.h).
628  /// @return The total number of active values in the leaf nodes
629  /// @param offsets array of prefix sums of offsets to active voxels
630  /// @param size on input, the size of @a offsets; on output, its new size
631  /// @param grainSize optional grain size for threading
632  /// @details If @a offsets is @c nullptr or @a size is smaller than the
633  /// total number of active voxels (the return value) then @a offsets
634  /// is reallocated and @a size equals the total number of active voxels.
635  size_t getPrefixSum(size_t*& offsets, size_t& size, size_t grainSize=1) const
636  {
637  if (offsets == nullptr || size < mLeafCount) {
638  delete [] offsets;
639  offsets = new size_t[mLeafCount];
640  size = mLeafCount;
641  }
642  size_t prefix = 0;
643  if ( grainSize > 0 ) {
644  PrefixSum tmp(this->leafRange( grainSize ), offsets, prefix);
645  } else {// serial
646  for (size_t i=0; i<mLeafCount; ++i) {
647  offsets[i] = prefix;
648  prefix += mLeafs[i]->onVoxelCount();
649  }
650  }
651  return prefix;
652  }
653 
654  ////////////////////////////////////////////////////////////////////////////////////
655  // All methods below are for internal use only and should never be called directly
656 
657  /// Used internally by tbb::parallel_for() - never call it directly!
658  void operator()(const RangeType& r) const
659  {
660  if (mTask) mTask(const_cast<LeafManager*>(this), r);
661  else OPENVDB_THROW(ValueError, "task is undefined");
662  }
663 
664 private:
665 
666  // This a simple wrapper for a c-style array so it mimics the api
667  // of a std container, e.g. std::vector or std::deque, and can be
668  // passed to Tree::getNodes().
669  struct MyArray {
670  using value_type = LeafType*;//required by Tree::getNodes
671  value_type* ptr;
672  MyArray(value_type* array) : ptr(array) {}
673  void push_back(value_type leaf) { *ptr++ = leaf; }//required by Tree::getNodes
674  };
675 
676  void initLeafArray()
677  {
678  const size_t leafCount = mTree->leafCount();
679  if (leafCount != mLeafCount) {
680  delete [] mLeafs;
681  mLeafs = (leafCount == 0) ? nullptr : new LeafType*[leafCount];
682  mLeafCount = leafCount;
683  }
684  MyArray a(mLeafs);
685  mTree->getNodes(a);
686  }
687 
688  void initAuxBuffers(bool serial)
689  {
690  const size_t auxBufferCount = mLeafCount * mAuxBuffersPerLeaf;
691  if (auxBufferCount != mAuxBufferCount) {
692  delete [] mAuxBuffers;
693  mAuxBuffers = (auxBufferCount == 0) ? nullptr : new NonConstBufferType[auxBufferCount];
694  mAuxBufferCount = auxBufferCount;
695  }
696  this->syncAllBuffers(serial);
697  }
698 
699  void cook(size_t grainsize)
700  {
701  if (grainsize>0) {
702  tbb::parallel_for(this->getRange(grainsize), *this);
703  } else {
704  (*this)(this->getRange());
705  }
706  }
707 
708  void doSwapLeafBuffer(const RangeType& r, size_t auxBufferIdx)
709  {
711  r, auxBufferIdx, mLeafs, mAuxBuffers, mAuxBuffersPerLeaf);
712  }
713 
714  void doSwapAuxBuffer(const RangeType& r, size_t auxBufferIdx1, size_t auxBufferIdx2)
715  {
716  for (size_t N = mAuxBuffersPerLeaf, n = N*r.begin(), m = N*r.end(); n != m; n+=N) {
717  mAuxBuffers[n + auxBufferIdx1].swap(mAuxBuffers[n + auxBufferIdx2]);
718  }
719  }
720 
721  void doSyncAuxBuffer(const RangeType& r, size_t auxBufferIdx)
722  {
723  for (size_t n = r.begin(), m = r.end(), N = mAuxBuffersPerLeaf; n != m; ++n) {
724  mAuxBuffers[n*N + auxBufferIdx] = mLeafs[n]->buffer();
725  }
726  }
727 
728  void doSyncAllBuffers1(const RangeType& r)
729  {
730  for (size_t n = r.begin(), m = r.end(); n != m; ++n) {
731  mAuxBuffers[n] = mLeafs[n]->buffer();
732  }
733  }
734 
735  void doSyncAllBuffers2(const RangeType& r)
736  {
737  for (size_t n = r.begin(), m = r.end(); n != m; ++n) {
738  const BufferType& leafBuffer = mLeafs[n]->buffer();
739  mAuxBuffers[2*n ] = leafBuffer;
740  mAuxBuffers[2*n+1] = leafBuffer;
741  }
742  }
743 
744  void doSyncAllBuffersN(const RangeType& r)
745  {
746  for (size_t n = r.begin(), m = r.end(), N = mAuxBuffersPerLeaf; n != m; ++n) {
747  const BufferType& leafBuffer = mLeafs[n]->buffer();
748  for (size_t i=n*N, j=i+N; i!=j; ++i) mAuxBuffers[i] = leafBuffer;
749  }
750  }
751 
752  /// @brief Private member class that applies a user-defined
753  /// functor to perform parallel_for on all the leaf nodes.
754  template<typename LeafOp>
755  struct LeafTransformer
756  {
757  LeafTransformer(const LeafOp &leafOp) : mLeafOp(leafOp)
758  {
759  }
760  void run(const LeafRange &range, bool threaded) const
761  {
762  threaded ? tbb::parallel_for(range, *this) : (*this)(range);
763  }
764  void operator()(const LeafRange &range) const
765  {
766  for (typename LeafRange::Iterator it = range.begin(); it; ++it) mLeafOp(*it, it.pos());
767  }
768  const LeafOp mLeafOp;
769  };// LeafTransformer
770 
771  /// @brief Private member class that applies a user-defined
772  /// functor to perform parallel_reduce on all the leaf nodes.
773  template<typename LeafOp>
774  struct LeafReducer
775  {
776  LeafReducer(LeafOp &leafOp) : mLeafOp(&leafOp), mOwnsOp(false)
777  {
778  }
779  LeafReducer(const LeafReducer &other, tbb::split)
780  : mLeafOp(new LeafOp(*(other.mLeafOp), tbb::split())), mOwnsOp(true)
781  {
782  }
783  ~LeafReducer() { if (mOwnsOp) delete mLeafOp; }
784  void run(const LeafRange& range, bool threaded)
785  {
786  threaded ? tbb::parallel_reduce(range, *this) : (*this)(range);
787  }
788  void operator()(const LeafRange& range)
789  {
790  LeafOp &op = *mLeafOp;//local registry
791  for (typename LeafRange::Iterator it = range.begin(); it; ++it) op(*it, it.pos());
792  }
793  void join(const LeafReducer& other) { mLeafOp->join(*(other.mLeafOp)); }
794  LeafOp *mLeafOp;
795  const bool mOwnsOp;
796  };// LeafReducer
797 
798  // Helper class to compute a prefix sum of offsets to active voxels
799  struct PrefixSum
800  {
801  PrefixSum(const LeafRange& r, size_t* offsets, size_t& prefix)
802  : mOffsets(offsets)
803  {
804  tbb::parallel_for( r, *this);
805  for (size_t i=0, leafCount = r.size(); i<leafCount; ++i) {
806  size_t tmp = offsets[i];
807  offsets[i] = prefix;
808  prefix += tmp;
809  }
810  }
811  inline void operator()(const LeafRange& r) const {
812  for (typename LeafRange::Iterator i = r.begin(); i; ++i) {
813  mOffsets[i.pos()] = i->onVoxelCount();
814  }
815  }
816  size_t* mOffsets;
817  };// PrefixSum
818 
819  using FuncType = typename std::function<void (LeafManager*, const RangeType&)>;
820 
821  TreeType* mTree;
822  size_t mLeafCount, mAuxBufferCount, mAuxBuffersPerLeaf;
823  LeafType** mLeafs;//array of LeafNode pointers
824  NonConstBufferType* mAuxBuffers;//array of auxiliary buffers
825  FuncType mTask;
826  const bool mIsMaster;
827 };//end of LeafManager class
828 
829 
830 // Partial specializations of LeafManager methods for const trees
831 template<typename TreeT>
833 {
835  using RangeT = typename ManagerT::RangeType;
836  using LeafT = typename ManagerT::LeafType;
837  using BufT = typename ManagerT::BufferType;
838 
839  static inline void doSwapLeafBuffer(const RangeT&, size_t /*auxBufferIdx*/,
840  LeafT**, BufT*, size_t /*bufsPerLeaf*/)
841  {
842  // Buffers can't be swapped into const trees.
843  }
844 };
845 
846 } // namespace tree
847 } // namespace OPENVDB_VERSION_NAME
848 } // namespace openvdb
849 
850 #endif // OPENVDB_TREE_LEAFMANAGER_HAS_BEEN_INCLUDED
851 
852 // Copyright (c) 2012-2018 DreamWorks Animation LLC
853 // All rights reserved. This software is distributed under the
854 // Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
void rebuild(TreeType &tree, bool serial=false)
Repopulate the leaf array and delete and reallocate auxiliary buffers.
Definition: LeafManager.h:291
void rebuild(TreeType &tree, size_t auxBuffersPerLeaf, bool serial=false)
Repopulate the leaf array and delete and reallocate auxiliary buffers.
Definition: LeafManager.h:296
LeafManager(TreeType &tree, size_t auxBuffersPerLeaf=0, bool serial=false)
Constructor from a tree reference and an auxiliary buffer count.
Definition: LeafManager.h:218
void reduce(LeafOp &op, bool threaded=true, size_t grainSize=1)
Threaded method that applies a user-supplied functor to each leaf node in the LeafManager. Unlike foreach (defined above) this method performs a reduction on all the leaf nodes.
Definition: LeafManager.h:573
SYS_FORCE_INLINE const_iterator begin() const
LeafRange(size_t begin, size_t end, const LeafManager &leafManager, size_t grainSize=1)
Definition: LeafManager.h:173
GLenum GLint * range
Definition: glcorearb.h:1924
typename CopyConstness< TreeType, NonConstBufferType >::Type BufferType
Definition: LeafManager.h:121
LeafRange leafRange(size_t grainsize=1) const
Return a TBB-compatible LeafRange.
Definition: LeafManager.h:386
static void doSwapLeafBuffer(const RangeT &r, size_t auxBufferIdx, LeafT **leafs, BufT *bufs, size_t bufsPerLeaf)
Definition: LeafManager.h:85
LeafType * operator->() const
Return a pointer to the leaf node to which this iterator is pointing.
Definition: LeafManager.h:144
png_voidp ptr
Definition: png.h:2145
const TreeType & tree() const
Return a const reference to tree associated with this manager.
Definition: LeafManager.h:343
TreeType & tree()
Return a reference to the tree associated with this manager.
Definition: LeafManager.h:346
RootNodeType & root()
Return a reference to the root node associated with this manager.
Definition: LeafManager.h:352
GLboolean GLboolean GLboolean GLboolean a
Definition: glcorearb.h:1221
#define OPENVDB_USE_VERSION_NAMESPACE
Definition: version.h:189
void operator()(const RangeType &r) const
Used internally by tbb::parallel_for() - never call it directly!
Definition: LeafManager.h:658
const RootNodeType & root() const
Return a const reference to root node associated with this manager.
Definition: LeafManager.h:349
const GLenum * bufs
Definition: glcorearb.h:780
png_uint_32 i
Definition: png.h:2877
uint64 value_type
Definition: GA_PrimCompat.h:29
void rebuildAuxBuffers(size_t auxBuffersPerLeaf, bool serial=false)
Change the number of auxiliary buffers.
Definition: LeafManager.h:307
GLsizeiptr size
Definition: glcorearb.h:663
GLuint GLsizei const GLuint const GLintptr * offsets
Definition: glcorearb.h:2620
bool isValid() const
Return true if the position of this iterator is in a valid range.
Definition: LeafManager.h:154
SYS_FORCE_INLINE const_iterator end() const
size_t leafCount() const
Return the number of leaf nodes.
Definition: LeafManager.h:328
typename TreeType::LeafNodeType NonConstLeafType
Definition: LeafManager.h:116
GLdouble n
Definition: glcorearb.h:2007
LeafType & operator*() const
Return a reference to the leaf node to which this iterator is pointing.
Definition: LeafManager.h:142
BufferType & buffer(size_t bufferIdx)
Return the nth buffer for the leaf node to which this iterator is pointing, where n = bufferIdx and n...
Definition: LeafManager.h:147
const std::enable_if<!VecTraits< T >::IsVec, T >::type & max(const T &a, const T &b)
Definition: Composite.h:133
typename TreeT::RootNodeType RootNodeType
Definition: LeafManager.h:115
GLuint GLuint end
Definition: glcorearb.h:474
LeafManager(TreeType &tree, LeafType **begin, LeafType **end, size_t auxBuffersPerLeaf=0, bool serial=false)
Construct directly from an existing array of leafnodes.
Definition: LeafManager.h:234
GLsizei GLsizei GLchar * source
Definition: glcorearb.h:802
bool empty() const
Return true if this iterator is exhausted.
Definition: LeafManager.h:160
void getNodes(ArrayT &array)
Insert pointers to nodes of the specified type into the array.
Definition: LeafManager.h:585
size_t getPrefixSum(size_t *&offsets, size_t &size, size_t grainSize=1) const
Generate a linear array of prefix sums of offsets into the active voxels in the leafs. So offsets[n]+m is the offset to the mth active voxel in the nth leaf node (useful for user-managed value buffers, e.g. in tools/LevelSetAdvect.h).
Definition: LeafManager.h:635
This class manages a linear array of pointers to a given tree's leaf nodes, as well as optional auxil...
Definition: LeafManager.h:110
typename leafmgr::TreeTraits< TreeT >::LeafIterType LeafIterType
Definition: LeafManager.h:119
GLenum target
Definition: glcorearb.h:1666
size_t pos() const
Return the index into the leaf array of the current leaf node.
Definition: LeafManager.h:152
RangeType getRange(size_t grainsize=1) const
Return a tbb::blocked_range of leaf array indices.
Definition: LeafManager.h:383
bool swapLeafBuffer(size_t bufferIdx, bool serial=false)
Swap each leaf node's buffer with the nth corresponding auxiliary buffer, where n = bufferIdx...
Definition: LeafManager.h:400
GA_API const UT_StringHolder transform
bool isConstTree() const
Return true if the tree associated with this manager is immutable.
Definition: LeafManager.h:355
bool syncAuxBuffer(size_t bufferIdx, bool serial=false)
Sync up the specified auxiliary buffer with the corresponding leaf node buffer.
Definition: LeafManager.h:436
#define OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
Definition: Platform.h:129
size_t auxBufferCount() const
Return the total number of allocated auxiliary buffers.
Definition: LeafManager.h:323
GLsizei const GLfloat * value
Definition: glcorearb.h:823
size_t auxBuffersPerLeaf() const
Return the number of auxiliary buffers per leaf node.
Definition: LeafManager.h:325
typename std::remove_const< ToType >::type Type
Definition: TreeIterator.h:68
GA_API const UT_StringHolder N
GLint GLint GLsizei GLint GLenum GLenum type
Definition: glcorearb.h:107
void rebuild(size_t auxBuffersPerLeaf, bool serial=false)
Repopulate the leaf array and delete and reallocate auxiliary buffers.
Definition: LeafManager.h:286
#define OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
Definition: Platform.h:130
GLboolean r
Definition: glcorearb.h:1221
LeafType & leaf(size_t leafIdx) const
Return a pointer to the leaf node at index leafIdx in the array.
Definition: LeafManager.h:359
#define const
Definition: zconf.h:214
Iterator & operator++()
Advance to the next leaf node.
Definition: LeafManager.h:140
void rebuild(bool serial=false)
(Re)initialize by resizing (if necessary) and repopulating the leaf array and by deleting existing au...
Definition: LeafManager.h:279
const std::enable_if<!VecTraits< T >::IsVec, T >::type & min(const T &a, const T &b)
Definition: Composite.h:129
void getNodes(ArrayT &array) const
Insert node pointers of the specified type into the array.
Definition: LeafManager.h:607
typename CopyConstness< TreeType, NonConstLeafType >::Type LeafType
Definition: LeafManager.h:117
static void doSwapLeafBuffer(const RangeT &, size_t, LeafT **, BufT *, size_t)
Definition: LeafManager.h:839
#define OPENVDB_VERSION_NAME
The version namespace name for this library version.
Definition: version.h:135
Index64 activeLeafVoxelCount() const
Return the number of active voxels in the leaf nodes.
Definition: LeafManager.h:332
void removeAuxBuffers()
Remove the auxiliary buffers, but don't rebuild the leaf array.
Definition: LeafManager.h:313
bool swapBuffer(size_t bufferIdx1, size_t bufferIdx2, bool serial=false)
Swap any two buffers for each leaf node.
Definition: LeafManager.h:412
#define OPENVDB_THROW(exception, message)
Definition: Exceptions.h:109
BufferType & getBuffer(size_t leafIdx, size_t bufferIdx) const
Return the leaf or auxiliary buffer for the leaf node at index leafIdx. If bufferIdx is zero...
Definition: LeafManager.h:371
bool test() const
Return true if this iterator is not yet exhausted.
Definition: LeafManager.h:156
void rebuildLeafArray()
Remove the auxiliary buffers and rebuild the leaf array.
Definition: LeafManager.h:316
bool syncAllBuffers(bool serial=false)
Sync up all auxiliary buffers with their corresponding leaf node buffers.
Definition: LeafManager.h:448