
Ari Danesh
ari@sidefx.com

H13 Particles for Motion Graphics
Particle and Packed Primitive Workflow

mailto:ari@sidefx.com

Agenda

H13 Causes the Artist to Use New Workflows

Demonstration of a Common Shot using H13 Methodologies

Taking a Logo and Destroying it

Having the Chunks Fly Toward Camera

Adding Particle Streams

Materials

Volumetric Lighting

Prerequisites

Basic Requirements - Some Familiarity with H13
Particles, Wrangle Nodes, RBDs

This Workshop is not a repeat of H13 Particles I did for
Next Steps: Procedural Animation M07 & M08

If you have not watched these videos please do so:
http://www.sidefx.com/index.php?option=com_content&task=blogcategory&id=228&Itemid=389

http://www.sidefx.com/index.php?option=com_content&task=blogcategory&id=228&Itemid=389

Project 1 - Logo Explode

Flip Book

Part 01 - Creating the LOGO and RBD

Creating the Logo

Drop down a Geometry Object -Rename it “destroy_logo”

Dive inside. Delete File SOP

Drop Down a Trace SOP

 Add a picture or logo to the parameter “Image Input”

Append an Extrude SOP (not a polyextrude”

Input into the the second context of the Extrude SOP a
curve that defines the bevel of the extrusion

Curve Direction

Primitives to
Extrude Cross Section

Trace SOP

Extrude SOP

Fracturing the LogoWe need to scatter “seed” points for the Voronoi Fracture to Work.

We do not just want surface factoring but we want to have a true
3D fracture. Therefore we have to scatter points in the interior of
the logo too.

Converting to a Volume will allow us to accomplish this.

Append a isoOffset SOP to the Extrusion

 The Output Type is going to be a Fog Volume

 Mode - Ray Intersect

Since we just need to break some crude pieces from the original
logo we only need a low sampling rate.

 Sampling rate - 30

Fracturing the Logo (cont.)

Now we have a 3D Volume we can “scatter” points
throughout the logo and not just the surface

Append a Scatter SOP to the “isoOffset” SOP. I named it
“chunk centers”

Scatter 200 points

Now drop down a VoronoiFracture SOP

 In the first context wire the Extrude SOP

 In the second context wire the Scatter SOP

Voronoi Fracture SOP

Results So Far..

Right now we have a static object that is fractured

To visualize if we have inside “chunks” we can temporarily append
a “Exploded View” SOP

Scatter 200 points

Now drop down a VoronoiFracture SOP

 In the first context wire the Extrude SOP

 In the second context wire the Scatter SOP

Voronoi Fracture

Exploded View

Voronoi Fracture , Creating Inside & Outside Groups

Go to the “Groups” Tab of the Voronoi Fracture

Enable “Create Output Groups”

Now and interior and exterior group will be created for
surfacing Interior and

Exterior Groups

Voronoi Fracture , Adding Interior Details

If you want to add detail to the interior sides of the
fractured geometry go to the Interior Detail Tab

Select “Add Interior Detail”

Create the roughness using Detail Size, Noise
Amplitude, and the usual noise controls

Select “Add Interior
Detail”

Interior Detail

H12 & H13 Workflows Diverge
Up until now the workflows for setting up this shot in H12
and H13 have been the same.

In H12 you would now have used a “Sort SOP” to
rearrange the points from closes to camera to farthest
away.

The reason why you would have done this is so when we
do the RBD simulation the closest “chunks” would start
moving first. If the furthest away “chunks” moved first
into the the non moving “chunks” the simulation would
just stop.

In H13 we want to take advantage of Packed Primitives so
we can not use the SORT SOP. Because Packing will do
its own re-ordering H12 Method

Creating Packed Primitives

After the Voronoi Fracture SOP append a
“Assemble” SOP

I named it “assemble__setup_packed_prims”

If you look at the parameters of the Assemble
SOP you will notice that there is a check box for
creating packed primitives

 Select it

Name the Inside Group - “inside”

Name the Output Prefix - “piece”

Select “Create Packed

Assemble SOP

Looking at the Voronoi Fracture SOP Again

Click on the Attributes of the Voronoi Fracture SOP you
just put down

Notice that by default “Create Name Attribute” is selected

A primitive attribute named “name” is created with
“piece” as its prefix.

This attribute can be used in the Assemble SOP

Create Name
Attribute

Details View With Prim
Attribute - Name

Looking at the Voronoi Fracture SOP Again (cont.)

Now look at the Assemble SOP

We selected “Create Packed Geometry”

If the “name” attribute is present a packed fragment will be
created for each unique value of the name attribute. Additionally,
a point attribute called “name” will be created to identify the
piece that packed fragment contains.

If it does not see the attribute “name” the output geometry will
be packed into an embedded packed primitive, and the Output
Prefix will be used to create the “name” point attribute.

Create Packed
Geometry Selected

Memory Footprint Packed vs Unpacked

Unpacked - 1.23 MB

Packed - 142.86 KB

This has huge
implications for

doing large
sims

Different Types of Packed Primitives

On-disk packed primitives - simply contain a file path, pointing to geometry in a
paged disk file. Houdini can read subsets of the geometry as needed, and stream
the geometry directly to the graphics card for display and transformation, so this is
very fast and memory efficient.

In-memory packed primitives - reside in RAM. They contain a transform and a
read-only reference to geometry elsewhere in memory. They can be shared and
copied efficiently for instancing.

Packed fragments - are similar to in-memory packed primitives. They contain a
transform and a read-only reference to a subset of another packed primitive. This
lets you copy and share instances of pieces of a larger geometry efficiently.

Alembic packed primitives - contain a file path pointing to an Alembic file, and a
reference to an Alembic node inside the file.

The Simplest Setup

Creating the RBD

Using the Shelf Tool

Go back up to the Object Level and select the logo_explode Object

In the Rigid Bodies Tab of the Shelf Tools Select RBD Object

A AutoDopNetwork is created for you

Select RBD Object

Modifying the AutoDopNetwork

We are going to advect the RBD chunks by using particle
forces. This is very easy to do in H13 but difficult in H12

Before we do that for this simulation we will not need
gravity so set the bypass flag on the last node of the
network “gravity”

Now if we look at the network the rigid body solver is
inline with two merges and the gravity

We need to add a multiple solver so we can add particle
forces

Run the Simulation….

Oops!	

It does not work :(

We Need a RBD Packed Geometry

Change RBD Object to RBD Packed Geometry

We set the “packed geometry” flag in the Assemble
SOP but we made the the Object into an RBG Object

We need to swap out in the DOP Network the RBD
Object to an RBD Packed Geometry Object

Drop down a RBD Object

Copy the SOPPath from the RBD object to the RBD
Packed Object

Replace the RBD Object with the RBD Packed Object
in the DOP Network

Modifying the AutoDopNetwork (cont.)

We want to advect the “chunks”

A good way to accomplish this is to use Particle Forces

We will have to re-arrange the network to use a Multiple Solver to use Particle Forces

Modifying the AutoDopNetwork (cont.)

Under the merge2 append a multiple solver

Remove the rigid body solver and rewire as show in
the image on the left

If you middle click on the right context of the
multiple solver you will see that you can add lots of
different forces

We are going to add particle forces…

Modifying the AutoDopNetwork (cont.)

Now We are Ready to add Particle Forces

Drop down a POP Force (Caution: The is a Force DOP
and a POP Force DOP. Use the POP Force)

Wire it into the right context of the Multiple Solver

I renamed some of the node to add descriptions

!

Adding Force in the Z-Axis

In the POP Force set the Force parameter to
(0,0,-1)

Run the Sim….

Hmm… Pretty Boring

Right now every moves as one monolithic block

!

!

Adding Force in the Z-Axis

Let us add some curl noise

In the noise tab set Amplitude to 1

Swirl Size - 2

Now things are starting to Break Apart!

Back at the Object Level…

Go back up to the Object Level

Object Level DOP Level

What Happened?

Dive into the Logo Explode Object

Select the DOP Import SOP and inspect the parameters

The DOP Import parameters are setup wrong

Set Import Style - Fetch Packed Geometry from DOP Network

Deselect - Use SingleObject

Default is set incorrectly Correct Setup

DOP Import

Back at the Object Level…

Do a Render

We promise to Fix it

Oops, We Have a Genuine Bug!

The Work Around

The problem is that SOHO - Part of the Mantra Renderer looks for the
attribute “density.”
If Density is present it assumes that it needs to render a volume
Since we have no volumes present nothing is rendered
If a material is assigned without a density attribute it should render fine

The Work Around (cont.)

To fix this we will delete the “density” attribute
Append a Attribute SOP to the dopimport
Add “density” to the “Delete Attributes” parameter

Object Level Render

Now the Object Level renders what
you expect!

Adding Character by Using Vexpressions

Adding Code to Start Explosion at Frame 24

Dive back into the AutoDOP Network

Select the POPForce DOP

Set Amplitude to 0

Select the first Vexpression Toggle

Write the following Vex Code

 if(@Frame > 24) {

 force = {0,0,-1};

 } else {

 force = {0,0,0};

 }

Run the Simulation and note that the Chunks do not move until frame 24

POP Force Vexpressions

In the PointWrangle add a Spare parameter

 Make it a float, name = z_force, label = Z Force

 Default Value - 1

 Range 0-10

Set the Force Parameter to (0,0,1)

!

Adding Code to Start Explosion at Frame 24

Dive back into the AutoDOP Network

Select the POPForce DOP

Set Amplitude to 0

Select the first Vexpression Toggle

Write the following Vex Code

 if(@Frame > 24) {

 force = {0,0,-1};

 } else {

 force = {0,0,0};

 }

Run the Simulation and note that the Chunks do not move until frame 24

Adding a Vexpression for the Amplitude too

Select the Vexpression right below the Amplitude
Parameter

Set Amplitude to 0

Write the following Vex Code

 if (@Frame > 24) {

 amp = 1.0;

 }

Run the Simulation and note that the Chunks do not
move until frame 24 but now when the do move we
have activated the curl noise

Advecting the Chunks from Front to Back

H13 Approach to Sorting Release Frame
Append a PointWrangle SOP to the Assemble SOP

In the PointWrangle add a Spare parameter

 Make it a float, name = duration, label = Duration

 Default Value - 24

 Range 0-72

Add another Spare Parameter

 Make it a float, name = start_release, label = Start Release,

 Default Value - 24

 Range 0-72

!

H13 Approach to Sorting Release Frame
(cont.)

v@pos = relbbox(@P);

 Here we make a new point attribute of type vector

 relbbox takes a Point Position as an argument

 and calculates the relative position with respect to

 the bounding box

!

H13 Approach to Sorting Release Frame
(cont.)

f@releaseweight = (1- @pos.z)*ch("duration");

In this expression we are calculation a weighting for chunk release time. We want chunks that
are closest to camera to release first there fore we complement the z position

 (1 - @pos.z) // weight with higher values chunks closer to camera

Then we multiply the weighting by the time in frames you want the chunks to release

 f@releaseweight = (1- @pos.z)*ch("duration"); // release over "duration" frames

H13 Approach to Sorting Release Frame
(cont.)

f@sortweight = (@ptnum/(@Npt-1.0))*ch(“duration");

Now we are going to incorporate the point number relative to the total number of points to
calculate the sort weight. Again, we multiply it by duration.

H13 Approach to Sorting Release Frame
(cont.)

f@release_frame = ch(“start_release") + @releaseweight;

Finally we calculate each chunks release frame by adding the release weight by the duration
so that no particle in back of another particle start moving before the front particle moves

POP Force Vexpressions (cont.)

if (@Frame > @release_frame)

 {

 force *= ch("z_force");

 }

else

 {

 force = 0;

 }

First we are going to calculate the force of each chunk based on the
attribute we created earlier “release_frame”

So now we go through each chunk and see if its attribute is > then the
release frame

If it is greater I turn the force on by setting it to the “z-force”

 else we turn off all forces so the chunk will not move

Adding Noise to the Force

Right now if you run the simulation the chunks come
straight at you. Let us make it more organic by adding
some curl noise.

!

amp *= f@Frame > @release_frame ? 1 : 0;

if the current Frame is greater then the release frame
multiple amplitude by 1 if not do not allow any curl noise

!

End of Part 01 - Creating the LOGO and RBD

Part 02 - Creating the Emitters for the Particle Streams

Deciding 1 or 2 Simulations

We can do the particle trails in one of two ways

One big simulation - Have the particle trails calculated in the same DOP Network at the RBD simulation
that Calculated the Chunks

Two separate simulations - Have a separate DOP Network calculate the Particle Trails

I decided on two Separate Simulations

If the simulations are large I can calculate them individually reducing the memory requirements

More flexibility in compositing

Breaking sims into separate structures easier to read and debug

What We Want to Accomplish

Creating Particles that emit from the surface of the chunks would be easy but not
aesthetically pleasing

It would be better to isolate the back surface of Chunk and emit particles only from
that surface

We also want to make sure the particles emit smoothly from the surface

Storing Velocity

We are now going to “store” the velocity of each chunk
so we can create the proper particle trail

Dive into the Logo Explode Object

Append a Trail SOP to the Null or
Attribute__delete_density

Append a Null - I renamed “OUT_TO_PARTICLES”

Keep the Render Flag on the Pack SOP

In the Trail SOP

 Result Type - Compute Velocity

 Velocity Approximation - Central Difference

Trail SOP

Why I chose Central Difference

Creating a Second DOP Network

At the Object Level Drop Down a DopNetwork Object

Rename it something like POP_DOPNetwork

Click on the Brain in the bottom right of the Screen

 Notice the current simulation is still pointing to the AutoDOPNetwork

 We want to change the active Network to the POP_DOPNetwork

Points to
AutoDOPNetwork

Making POP_DOPNetwork

Dive inside the POP_DOPNetwork

Now pop back up out of the POP_DOPNetwork

Click on the Brain in the bottom right of the Screen

 Notice it is now pointing to the POP_DOP Network as the current simulation

Points to
POP_DOPNetwork

Creating the Geometry Based Emitters for the Particle Stream

Geometry Based Emitter

At the Object level drop down a Geometry SOP

Rename it to
“Particle_Stream_Generated_From_Logo_Explode”

Dive inside

Drop down a Object Merge SOP

 Object - /obj/Logo_Explode/OUT_TO_PARTICLES

 Transform - Into this Object

Unpacking Geometry

We need to unpack the geometry because we need to
place emitters on each fragment.

Imagine that the packed “chunks” are all contained in a
ziplock bag. It is easy to cary around all the chunks in the
bag. That is why it is so efficient. We are not carrying
every single individual piece.

Now imagine if you want to paint each individual piece it
would be impossible to paint while they are in the bag

Unpacking allows you to open the ziplock bag and select
each piece for painting

Unpack SOP

Making the Motion Smooth

Currently the Motion is calculated on the start of each frame

For the emitters we want to calculate subframes for
smoother animation

In DOPs we would set are subsamples to a higher value then 1

Here, in SOPs we can use the Time Blend SOP

Append a Timeblend SOP to the Unpack SOP

 Hold Frame - 1

 Point id Attribute - id

 Primitive id Attribute - name

Time Blend

Main Concept - Change Networks from whole frames to proper intermediate results

Hmm, Need to Compute Velocity Again…

I thought I computed velocity using the Trail SOP in the
Logo_Explode Object

If I look at the Details View of the Object Merge velocity is
there as a point attribute

When I unpack there is no velocity

Object Merge Node -
velocity is present

Unpack Node - velocity
is not present

Append a Trail SOP

Recalculate Velocity

Append a Trail SOP

Where To Generate Particle Streams?
First, We probably do not want to place particle emitters on geometry
that is not moving

There let us delete all primitives that are not moving (on a per frame
basis)

We have to calculate the magnitude of the velocity for each primitive

Magnitude = sqrt(Vx2 + Vy2 + Vz2)

Append a Delete SOP (a Blast SOP will not work)

 Operation - Delete Non-Selected

 Number Tab

 Operation - Delete By Expression

 Filter Expression - length($VX, $VY, $VZ) > 0.01

!

Why Can’t We Use the Blast SOP

Blast is designed to remove geometry that you select interactively in the viewport, as
opposed to Delete which is a more procedural tool.

In addition to simply deleting unwanted parts of a model, the delete operator is useful
for culling primitives from very dense geometry to speed up cooking of nodes
downstream.

This delete operation can also delete profile groups (for example, 0.5 1.2-3.9) and
mixed groups (for example, 0 0.5 4-12 1.2-3.9) causing the remaining hierarchy to
update.

Where To Generate Particle Streams? (cont.)

We will eventually drop down a Scatter SOP on the remaining
primitives to be the particle emitters

The Scatter SOP will distribute points equally on all prime.

This is probably not what we want

What would be better is for more points to be scattered on large
primitives and on a few to be scattered on small prims

Append a Measure SOP

 Type - Area

Where To Generate Particle Streams? (cont.)

So far we deleted prime that are not moving and calculated the area of each prim

Now, we really do not want points to be scattered on the forward faces of the moving prims.

To calculate the forward faces of the moving prims we can use the the velocity of chunks
and the point normals.

If the surface normal and velocity are facing the same direction we know that the prim is
forward facing and we do not want points scattered on it

We can use a VOPSOP to calculate if the the two vectors (Point Normals and Velocity) are
facing in the same direction

Calculating Direction of Point Normal and Velocity

Append a VOPSOP to the Measure SOP

Dive Inside and Layout the following Nodes

What is the VOPSOP Doing?

http://www.mathsisfun.com/algebra/vectors-dot-product.html

First we will take the dot product of Velocity and the Point Normal

v•N = |v|x|N|x cos(ang)

If v and N are facing the same direction |v|x|N|x
cos(0)will be |v|x|N|x 1 but if the are 90 degrees
apart the result will be 0.

So we now know the closer v and N to the same
direction the greater the result will be the further
apart the values will go into the negative direction

v

N

ang

http://www.mathsisfun.com/algebra/vectors-dot-product.html

What is the VOPSOP Doing? (cont.)

We might not want the emitters to be on the full range of
primitives

For instance we might now want particle streams coming
from the sides of the chunks

By appending a Fit operator we can control the range of
emissions

What is the VOPSOP Doing? (cont.)

Right now the points would be scattered on the wrong side of the
Chunks.

We can use a Ramp to negate the side the emitters will be placed
and at the same time give the artist control over how much of the
chunk should receive emitters

Append a Ramp - Set the ramp to the image on the left

 If the values are close to zero place emitters

What is the VOPSOP Doing? (cont.)

Append a Bind Export operator and name it “scatter_weight?

We will use this attribute as one of the factors in deciding where
to place emitters

Back at the Geometry Level

The VOPSOP calculated a Point Attribute

We want to calculate emitters at the Primitive level

Append a Attribute Promote

 Original Name - scatter_weight

 Original Class - Point

 New Class - Primitive

 Promotion Method - Average

Putting it all together

We are ready to calculate where to place are emitters.

 We know the area of each primitive

 We know the direction of each primitive

Append an Attribute Wrangle

 Run Over - Primitives

Putting it all together (cont.)

By multiplying the area we measured by the scatter_weight we will have a value
that tells us to place emitters mostly where the geometry is large and facing
away from the direction of movement

@area *= @scatter_weight;

Putting it all together (cont.)

If the area calculated is close to zero delete the emitter by setting @ dead to
zero

i@dead = @area < 0.00001 ? 1 : 0;

or if you like the long format

if (@area < 0.00001) {!

! i@dead = 1;!

} else {!

! i@dead = 0;!

}!

If you want to previz the area you can just add

@Cd = @area*100; !

Promoting Dead

dead is currently a Primitive Attribute

We want to use dead to eventually delete particles

Append an Attribute Promote

 Original Name - dead

 Original Class - Primitive

 New Class - Point

 Promotion Method - Maximum

Scatter the Emitters

Yes, finally ready to scatter emitters

Append a Scatter SOP

 Number of Points:
ch(“../../DopNetwork__Particle_Stream_Generated_From_Logo_Explode/logo_explode_source/impulserate")

Scatter the Emitters (cont.)

We want the emitter to be located at a different location on the surface for each
frame

 Random Seed - $F*2.001

Append a Scatter SOP

 Number of Points:
ch(“../../DopNetwork__Particle_Stream_Generated_From_Logo_Explode/logo_explode_source/impulserate")

Scatter the Emitters (cont.)

Now we want to scatter the emitters only in the area that the “area” attribute has
calculated

Alternate Attribute - area

Kill the Dead Emitters

Now we want to kill the emitters that should not emit
particle streams

Append a Blast SOP

 Group - @dead==1

Do Not Render the Emitters

You probably want to see the emitters in the Viewport but the should not be rendered

Add two Nulls one for Display, the other for Render. The Render is NOT wired to anything

End of Part 02 - Creating the Emitters for the Particle Stream

Part 03 - Creating the Particle Streams

Creating the POPDopNetwork

Make Sure the POPDOPNetwork is the Active Network

At the Object Level select the Logo_Explode_Source (the
Object that contains the emitters)

In the Particle Shelf Tool Tab select the Source Particle
Tool

make sure this is the
active Network

Source Particle Tool

POPDOPNetwork

Dive back into the POPDOPNetwork and append a
POPDrag Force

 Air Resistance -1

Bypass the Gravity SOP. We do not want the particles to
fall in this simulation

POPDOPNetwork (cont.)
We want the Particles to steam backwards with very little
variance

In the logo_explode_source (POP Source)

 In the Attributes Tab

 Initial Velocity - Add to inherited velocity

 Inherit Velocity - -2

 Variance 0.05, 0.05, 0.05

POPDOPNetwork (cont.)

Birth Tab Network

match these values

POPDOPNetwork (cont.)

Source Tab Network

Make sure to change
Emission Type - Points

Source Particles

Right now if we render the particles will be large and
white

We know that particle size is controlled by scale just line
curve width is controlled by width

We can control the size of the particles base on
normalized age Dive into the Source_Particles Object

large white particles

Source Particles (cont).

Append an Attribute Wrangle node to the import_source

In the Attribute Wrangle make sure we are running over points

To make the particles red

 @Cd = {1,0,0};

To make the size of the particles larger over time

 @pscale = fit01(smooth(0,.2, @age), 0.001, 0.0125);

Smooth

Fit01

End of Part 03 - Creating the Particle Streams

Part 04 - Making the Particles Collide with the Chunks

Getting the Chunks for Particle Collision

At the Object Level dive back into the
Particle_Stream_Generated_From_Logo_Explode

Add one more Null next to the Display

 Name it OUT_to_DOPs

Our Object Level Network so far

Creating the RBD Static Object for the Chunks

We need to Create an RBD Static Object for the particles to collide with the Chunks

At the Object Level drop down a Geometry Object

 Name it - RBD_POP_Colliders

Dive inside and drop down a Object Merge SOP

 Object 1 - /obj/Particle_Stream_Generated_From_Logo_Explode/OUT_to_RBD_collider_geo

Creating an Attribute for the Static Object

We need a Detail Attribute to point where the geometry
for the Static Object is located

Append a Attribute Create to the Object Merge

 Name - doppath

 Class - Detail

 Type -String

 String - /obj/POP_DopNetwork/RBD_POP_colliders

Creating the Static Object

At the Object Level make sure the POPDOP Network is active

Select the RBD_POP_Collider Object

In the Particle Shelf Tool Tab select Static Object

Dive back into the POPDOP_Network and see the results

End of Part 04 - Making the Particles Collide with the Chunks

Part 05 - Adding Materials

Packed Geometry

Because we are using Packed Geometry we will have to assign materials in a slightly
different manner

The material SOP can not be used.

Instead we will use the PackEdit SOP

Adding Materials to the Chunks

At the Object Level drop down a SHOPNET

Name it - Materials__Logo_Explode

Dive Inside

Drop Down a couple of Material_Shaders

 Name Material Shader 1 - mat__logo_explode_surface

 Name Material Shader 2 - mat__logo_explode_fractured_faces

!

Unpack for Material Assignments

At the Object Level Dive Inside the Logo_Explode Object

Due to a current limitation of Packed Primitives before we
use the Name SOP and PackEdit we will have to Unpack

After the Trail SOP or Attribute SOP append a Unpack SOP

Then Append a Name SOP

Logo Explode Materials

For the Name SOP

 Attribute - name

 Class Primitive

 Name from Group - Selected

 Group Mask *

Currently, we just created the prim attribute “name” but there are no values

Warning about the Name SOP

When you drop down the Name SOP there is already one Naming	

	

 This MUST be deleted or else there will be naming that is blank	

You must delete the
default naming…

…even though it looks
blank

Name SOP

Logo Explode Materials (cont.)

Append a Pack SOP (You might not have to do this. This is because of a bug in the
current build I was using)

Append a PackEdit SOP

In the Pack Edit SOP go to the Materials Tab

 Packed Names - Click on the Pick Button

 In the Tree View that Pops up click down to “pack__repack_inside”

 Click Accept

 Material - Select the surface material you created

 Click the + button and repeat the process for the outside fragments

!

End of Part 05 - Adding Materials

Part 06 - Volumetric Lighting

Add a Camera

At the Object Level drop down a Camera directly facing
the oncoming Chunks

I named it “cam__logo_explode_front_50mm_16_9”

Add a Light

Add a small Grid Light behind the Logo facing
the direction of the camera

I named it “lgt__logo_explode_back_grid"

Notice grid light is very
small

Notice intensity is quite
large

Create the Volume
At the Object Level Drop down a Geometry Object

Rename it - “volume_frustum__for_light_rays”

Drop inside

 Drop down a Volume

 Make the initial Value 1,0,0

 Rank - Scalar

In the Dimensions Tab Select the “From Camera” Tab

 Set Camera to - “cam__logo_explode_front_50mm_16_9”

 Set the Z Near - 1

 Set Z far - 5.5

 Uniform Sampling - Max Axis

 Uniform Sampling - 128

Render

