

Houdini Light, Shade, Render M07: Mantra Render Engines

Ari Danesh ari@sidefx.com

Sunday, November 25, 12

- Limiting the number of CPUs Rendering (A Diversion)
- Saving and Rendering an IFD
- Definitive Resource for Mantra Learning
- Viewport Speed vs Render Speed
- First Step of Rendering Refinement
- Benefit of Instancing or not

TX

- Bump Maps
- True Displacements
- Buckets
- Coving
- Opacity
- Shading
- Jitter

Agenda

Limiting the Number of CPUs for Rendering

mantra2 × Parameter	Spreadsheet 8	• 0		
🛱 🚉 🥝 out				
Mantra mant ra? Click for OP menu			*	H_ 🕖 🕐
Render Rende	er Control			
Valid Frame Range	Render Any	Frame	÷	
Start/End/Inc				
Render With Take	(Current)	ŧ		
Main Objects Proj	perties Scri	ipts		
Camera	/obj/caml			₩
Command	mantra			
Disk File				× 16
	Main	Objects Prop	perties Scripts	Wesser
		Camera	/obj/caml	<u>ب</u> در
		Command	mantra	
		Disk File		No command line overrides
			Block Until Render Com	plet Network rendering
			Initialize Simulation OPs	s Verbose output
			Y Show In Viewport Menu	More verbose output
				Verbose output with VEX profiling
				Verbose to console (Windows only)
				Filter IFD using python

- Drop down a Mantra Node
- In the Main Tab Click the Drop Down Menu for Command
 - Select "Use One CPU"
 - Change the 1 after -j to the number of processors you want

Without an output file the render is saved to whatever the hip files Mantra node was setup for

Saving and Rendering a IFD

- IFD Instantaneous Frame Description format produced by Houdini and consumed by mantra to produce a rendered image or animation sequence. The IFD file contains a complete description of the scene and how to render it.
- IFD is the Houdini equivelent of the RIB format
- After rendering the IFD to disk. Try typing one of these commands in the shell:
 - mantra < test.ifd</p>
 - cat test.ifd | mantra test.jpg

- Old but still very good! Masterclass: Rendering With Mantra 9.5
 http://www.sidefx.com/index.php?option=com_content&task=view&id=1414&Itemid=344
- Masterclass: Mantra & Houdini 11
 - http://www.sidefx.com/index.php?option=com_content&task=view&id=1412&Itemid=344
- Masterclass: Mantra Rendering
 - http://www.sidefx.com/index.php?option=com_content&task=view&id=2160&Itemid=344

Master in Class in Mantra

Viewport Speed vs Rendering Speed

- Houdini has to reduce every polygon into smaller polygons until it can render the object smoothly
- Do you want to subdivide upfront or let Houdini subdivide at render time
 - Game Er
 work
 - Maybe not the right solution Might be better to optimize yourself
- Try the following make a torus with very view primitives
 - Render
 - At the Object Level go to the geometry tab of the Torus and select "Polygon as Subdivision"

• Game Engine Perspective - Let the Renderer do the

Refinement

 Given the current view of the camera Mantra has to render every primitive in view of the current scene.

Go to render View

- Turn off Preview
- Click render, then stop render
- See size of bucket
- Each poly must be reduced into smaller polys to render smoothly
- Refinement takes your geometry and subdivides your geometry into very small pieces (Very Costly In Time)

Refinement (cont.)

Single Polygon being refined for rendering

Let's look at a single polygon

 Refinement takes the polygon and cuts it down the middle and say vertically, and then horizontally. Now one poly is four. Mantra then takes one of the four and repeats the process. This is done over and over again in a very long for...loop (actually BSP Tree) for each poly. This is a very time intensive task in Mantra

SIDE EFFECTS

SOFTWARE

Benefits of Instancing...

Not really when it comes to refinement

- Instancing helps by only loading in one copy of the geometry to memory. This is great!
- Once the refinement phase starts. Polys must be reduced for each instance.
- As of H12 all rendering engines use the same refinement stage.
- Also, as of H12, the Shading Quality Multiplier is shared among all the renderers.

How do I control the Shading Multiplier

Mantra mantra2	। 🌣 मि. 🕖 🧕
Render Render Control	
Valid Frame Range Render Any Frame 🜲	
Start/End/Inc 1 240 1	
Render With Take (Current) 🍦	
Main Objects Properties Scripts	
Default Properties	今本
 Output Out Ren Sam Sha PBR Sta D 	ic Geo 🕨
Shading Quality M 1	>
Geometry Measuring Non-Raster Measuring	
Z-Importance 0	ن ـــــ

- Increasing the Shadow Quality Multiplier causes more refinement to occur.
- Refinement is a product of Shading Quality Multiplier, bucket size, and view of camera.
- In the Dicing Tab of the Properties tab in Mantra
- Larger is greater quality Opposite of RSL

What if I have a Huge Scene?

boxl	
subdividel	

subdivide1 × Parameter Spreadsheet 😂 😋				
A Di	box_object2			
🛞 Subdivide subd	ividel			
Group				
Creases				
Depth	4			
	✔ Override Crease Weight Attribute			
Crease Weight	7.4			
	Generate Resulting Creases			
New Group	creases			
Close Cracks	Pull Cracks Closed 🛔			
Boundary	Divide Edges 🖕			
Bias	1			
	🖌 Recompute Point Normals			
	✓ Smooth Vertex Attributes			
	Enforce Consistent Topology			
	Linear Creases			
	Mantra-compatible Subdivision			

- I have hundreds of millions of polygons. It might be better for the user to do the refining
- How do I refine on my own?
- Drop down a box
 - Go inside the geometry
 - Add a Subdivide SOP
 - LOOKS AWFUL!
 - Turn on "Override Crease Weight"
 - Increase Crease Weight to 1 or greater
 - Change Depth to say 4
 - Adjust Crease Weight

- In large scenes with high poly counts if you do manual refining then instance objects are all the same through the rendering pipeline. Therefore rendering can be much faster.
- Look through the camera.
 - Try to have polys of instances roughly the same size
 - Some instances might be better a separate objects and un-refined.
- What if I am applying Displacement Maps?
 - All Geometry must then be diced?
 - Do you really need Displacements?
 - What about Bump only?

Moral of the Story...

Bump Maps...

Mantra Surface Shader or Make Your Own

- In the Material Palette
 - Drop down a Mantra Surface Shader
 - Select Displacement Tab
 - Sub Select Bump Normal Map
 - Select Use Bump Map

/shop/vopmaterial1 ×	Material Palette 🙁 😝	U
🔄 🚖 🥏 shop 🔪	🐞 vopmaterial1	💌 🖻 🔍
	. 🗊 🚔	‡ 1⊨ == # # 🔍 💿
		VEX Builder
displac	cenml1	
P	dispP	displacement_output
► nN	dispN ►	
scale		N Snader
► sshea ► tshea	ar r	
► polys ► objsp	ace	
🕨 bump		
displacenml1 🗴 Para	meter Spreadsheet 🙁 🔂	0
🚓 🐟 🥖 shop 🕅	🕷 vopmaterial1	💿 🕂 🔹
Lisplace Along	Normal displacenmll	🗱 H 🕖 🕢
Displacement Amo	o	
Scale	1	
S Shear	0	
T Shear		ing Of Polymers
	Object Space	ing Of Polygons 🔅
	✓ Bump Only	

Bump Maps... (cont.)

Make Your Own

In a SHOP Context

- Drop down a Material Shader Builder
 - Inside the VOP Network
 - Drop Down a "Displace Along Normal"
 - In the parameters choose "Bump Only"

SIDE EFFECTS SOFTWARE

Material Shader E	Builder mantrasurface	🗰 🗱 🕀 🕐 🚺	
rface Displacemer	nt OpenGL		
isplacement Map	Bump Normal Map		
Displace Direction	Up & Down: Gray = No Displace 🛔		
Displacement Scale	0.05		
isplacement Bound	0.05		
	✔ True Displacements		
	Y Enable Displacement Map		
Displacement Map		- K	
Disp Channel	Luminance 🝦		
Disp Map Wrap	Repeat 🍦		
Disp Map Filter	Box 🛓		
Disp Map Width	1		

True Displacements

True Displacement in the Mantra Surface Shader

With True Displacements on Instances become unique even before refinement! May cause memory bloat

What Properties Effect Refinement?

mantra2 × Parameter Spreadsheet 😂 🗘	
🔄 🔄 out	
Mantra mantra2	🗱 H 🕖 🕐
Render Render Control	
Valid Frame Range Render Any Frame	
Render With Take (Current)	
Main Objects Properties Scripts	
Default Properties	
Output Out Ren Sam Sha PBR Sta.	Dic Gr
Geometry Measuring Non-Raster Measuring	
Z-Importance Non-Raster Measuring	
Uniform Measu	
	form Concratos
	orm-Generates
uniform	divisions. The size of
the divi	sions is controlled by
the G	eometry Quality or
Sh	ading Quality in
	opolygon renders
ППСГ	opolygon renders.
	*

- Shading Quality
- Displacement
- Level of Detail in NURBs or Bezier Attributes
 Dicing
 - Shader Quality
 - Geometry Measuring
- In Geometry Measuring you can use Uniform Measuring to get back Instancing. It measures at Scene View vs Camera View
 - Non-Uniform = Camera Space
 - Raster Space = RasterSpace
 - Uniform = Scene Space

16x16 bucket

64x64 bucket

🎉 Mantra mant ra2	🗱 🖯 🕖 🕐	
Render Rende	r Control	
Valid Frame Range	Render Any Frame	
Start/End/Inc	1 240 1	
Render With Take	(Current)	
Main Objects Prop	perties Scripts	
Default Properties	z∓ c	
◀ Output Out	Ren Sam Sha PBR Sta Dic Geo 🕨	
Rendering Engine	Micropolygon Rendering	
Tile Size	16	
Opacity Limit	0.995	
1218 B 1 - 61	Vise Max Processors	
Thread Count		
Cache Limit	Proportion of Physical Memory	
Cache Memory Ratio	0.25	
Ray Tracing Accele	KD-Tree	
KD-Tree Memory F		B

Buckets

SIDE EFFECTS

SOFTWARE

- Mantra by default uses 16x16 pixel bucket size.
- Each bucket is rendered independently of its surroundings
- After a bucket is rendered, the renderer can throw away all the computed micropolygon geometry, saving memory
 - If you are having memory issues Try increasing the bucket size.
 - Sounds like inverse logic, but since after a bucket is rendered Mantra releases the memory you might have a more efficient render.

Quick Diversion - Rendering Properties

000	Edit Parameter Interface
diting Node: /out/mantra2	
reate Parameters	Existing Parameters
By Type For Rendering From Nodes	
🗖 🌍 root	Show Invisible Parameters
+- 🔁 Alfred 3.0	Pender Control (renderdialog)
🕂 🧮 🧮 Event Scripts	Valid Frame Dange (trange)
💶 🛅 Brickmap Generator	Start/End/Inc (f)
🖶 🛅 Mantra	Alle Render With Take (take)
🟚 🛅 Dicing	
📮 🛅 Fog	Camera (camera)
🖬 – 🚞 Formatting	- Al Command (solo pipecmd)
🗖 📴 Geometry	Save IFD File To Disk (solo outputmode)
🛛 🗕 🖶 Procedural Shader (shop_geom	Disk File (soho diskfile)
🛛 🛁 Geometry Disk File (vm_archive)	Block Until Render Complete (soho foreground)
Auto-Archiving (vm_auto_archive	Initialize Simulation OPs (soho initsim)
- Save Binary Geometry (vm_bina	Show In Viewport Menu (soho viewport menu)
- 🗹 Automatically Compute Normals	- Dijects
Coving (vm_coving)	Candidate Objects (vobject)
Use Unit s/t for Curves (vm_cur	Force Objects (forceobject)
	Forced Matte (matte_objects)
All Render Group (vm_geometrygro	II Forced Phantom (phantom_objects)
Metaballs as Volume (vm_metav	Exclude Objects (excludeobject)
Ignore Geometry Attribute Shad	Separator
Render As Points (Mantra) (vm_r	Solo Light (sololight)
Polygons As Subdivision (Mantr	Candidate Lights (alights)
Backface Removal (vm_rmbackf	Force Lights (forcelights)
Save Geometry Groups (vm_sa	Exclude Lights (excludelights)
Use N For Point Rendering (vm_	- Headlight Creation (soho_autoheadlight)
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Separator
E- Irradiance	니 나 Sible Fog (vfog)
	- Properties
	🔰 🚽 🚽 Default Properties (shop_propertiespath)
	Dutput
	Output Picture (vm_picture)
Photon A	Output Device (vm_device)
	-/Kin Pixel Filter (vm_pfilter)
Filter	
	Filter

 Let's take a under the hood view of the Mantra Rendering Pipeline

- Open up Rendering Parameters
- Mantra ---> Geometry
 - You can see the geo pipeline in the refinement stage
- Now look at Dicing
 - If you look at flatness. It deals with curves and see what value Mantra should determine that the curve is flat
- Re-Dice Displacements under shading (remember from last week)

- Make a hook just using displacements.
- You can take a poly, displace along the y. Re-dice and displace in the z, re-dice and displace on the x, finally re-dice and displace on the on z.
- What happened to refinement?
 - Refinement must now be redone after each displace.
 - This will yield huge memory bloat.

Note on Re-Dicing

torus_object1 🗴 Parar	meter Spreadsheet 🖾 😯	- tru ((
Ceometry torus	5_objectl	🌞 H 🛈 🥝
Transform Material	Render Misc	
Display		
	Phantom	
	🎸 Renderable	
Shading Sampling	Dicing Geometry	
	Backface Removal	
Procedural Shader		つ 本
	🖌 Force Procedural Geometry Output	
	🎸 Polygons As Subdivision (Mantra)	
Render As Points (No Point Rendering 🔶	
	Use N For Point Rendering	
	Metaballs as Volume	
Coving	Coving for displacement/sub-d 🛛 🌲	
	Disable Coving s	
	Coving for displacement/sub-d ders	
	Coving for all primitives	

What is Coving?

 Coving is the process of filling cracks in diced geometry at render time, where different levels of dicing side-by-side create gaps at T-junctions.

Do not disable Coving - It can hurt render times and create ugly holes in the rendered geometry

The default setting, Coving for displacement/subd, only does coving for surfaces with a displacement shader and subdivision surfaces, where the displacement of points can potentially create large cracks. This is sufficient for more rendering, however you may want to use Coving for all primitives if you are using a very low shading rate or see cracks in the alpha of the rendered image.

- Add a Sphere at the Object Level
- Partially intersect with Box
- Assign a Glass Shader
- Hit Render using PBR
- After Refinement with have Opacity and Culling Phase.
- Every vertex on every primitive. Only the "Of" part of the geometry is tested.
 - Different then RSL because Mantra optimized for Volumes, Fog.
 - ▶ 1 = Opaque, O = Transparent
 - Anything in Between gets tested further in the pipeline

Opacity Stage

	A A	
K A	11	

Main Objects Prop	oerties Scripts							
Default Properties								
Output Output Optic	ons Render Sampling Shading PBR Statistics Dicing Geometry Irradiance							
	Enable Depth Of Field							
	Allow Motion Blur							
	Raytrace Motion Blur							
Motion Factor	0							
Xform Time Samples	2							
Geo Time Samples								
Shutter Offset	1							
	🖌 Allow Image Motion Blur							
Pixel Samples	3 3							
Jitter	1							
	🖌 Sample Lock							
	🖌 Ray Variance Antialiasing							
Min Ray Samples								
Max Ray Samples	9							
Noise Level	0.05							
Volume Step Size	0.1							
Volume Shadow Q	1							
	🖌 Stochastic Transparency							
Transparent Samp	1							
Random Seed								
Input Operators (Drag/Drop to reorder)								

Stochastic Sampling

- Glass has an Of of 1 or O
- We can break the shader by going to our Glass Shader and Set Opacity Scale to 0.5
- If Transparency is detected, Stochastic Transparency is fired off
- Only for Ray Tracing, not Micro Polygons

aterial Shader Builder glass 🥵 🛱 🕖							
ce Displacemen	e Displacement OpenGL						
se Reflect Re	fract Emission	Opacity Settings					
Opacity Scale	0.5	2 <u></u>		[
Opacity Color	1		1		1		
	Use Opacity Ma	p				and the second sec	
Opacity Map							
Tint Intensity							
oacity Map Wrap	Repeat 🝦						
oacity Map Filter	Catmull-Rom						
acity Map Width							

Physically Plausible

Not Plausible

Shading

SIDE EFFECTS SOFTWARE

Three Different Renderers

- PBR (Physically Based Renderer)
 - PBR is Non-Biased Rendering
- Ray Tracing, MicroPolygon Renderer
 - Biased Rendering
- PBR Area Lights Render faster then Point Lights

mantra2 × Parameter S	preadsheet 🙁 🖸					
🔄 🚓 🥥 out						
🎉 Mantra mantra2			*			
Render Render	r Control					
Valid Frame Range	Render Any Frame	\$				
Start/End/Inc			1			
Render With Take	(Current) 🛔					
Main Objects Prop	erties Scripts					
Default Properties						
Output Output Optio	ons Render Sampling Enable Depth Of Field Allow Motion Blur Raytrace Motion Blur	Shading PBR Statistics	Dicing Geometry Irradiance			
Motion Factor						
Xform Time Samples						
Geo Time Samples						
Shutter Offset						
	Y Allow Image Motion Blur					
Pixel Samples	3		3			
Jitter						
	 Sample Lock Ray Variance Antialiasing 	a				
Min Ray Samples		3				
Max Ray Samples	9					
Noise Level	0.05					
Volume Step Size	0.1	-1				
Volume Shadow Q	1					
	🖌 Stochastic Transparency	y				
Transparent Samp	1					
Random Seed	0	<u>k 8 k </u>				

Pixel Samples

3X3 Samples

- have separate samples in case you are using non square pixels or working with anamorphic film
- What is Jitter?
 - When shooting rays at a surface to calculate color randomly jitters rays to get more natural looking results.
 - Look at 1980 films before jitter to see the super clean, crisp look.
 - Leave at 1

Zoom into a Pixel

- Notice how with a Jitter of 1 the pixels are not as uniformly shaded as with jitter = O
- Pixel Samples used by all three rendering engines
- For Micropolygon rendering one more step of refinement. Will refine to one pixel
- In Micropolygon every Vertex has to be rendered/shaded.

SIDE EFFECTS

SOFTWARE

Not useful for Volumes

When do I need to Increase Pixel Samples

- If the Geometry has a lot of detail or texture sample has a lot of high frequency noise increase pixel samples
- If not reduce Noise Level for better results

6x6 Pixel Sample

2x2 Pixel Sample

nantra2 🗴 Parameter	ipreadsheet 🛛 🖸	- 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19		• 0
🛊 🔿 🞯 out				- H 💿
Mantra mant ra2				🔅 Н 🕖 📀
Render Rende	r Control			
Valid Frame Range	Render Any Frame	÷		
Start/End/Inc				
Render With Take	(Current) 👙			
1ain Objects Pro	erties Scripts			
Default Properties				2 ₹
Output Output Opti	ons Render Sampling Shad	ding PBR Statistics D	icing Geometry Irradiance	
PBR Shader				∼ 75
PBR Photon Shader				2 ₹
Allowable Paths	Specular, Diffuse Paths 🛛 👘			
Color Limit	Specular, Diffuse Paths			
	All Paulis			

Output Output Optic	ons Render	Sampling	Shading	PBR	Statistic	s Dicing	Geometry	Irradiance	
Reflect Limit	10		•	3 2			N 90		
Refract Limit	10		• 22		•				
Diffuse Limit	0				191		21 876		
Volume Limit	0				- 181		Ni Milana		
	0		2/3	2) 	- 181		S. 822	28	
Raytracing Blas	0.001								
	Bias Along	Normal							
Color Space	Linear	¢							
At Ray Limit	Use Black B	ackground			\$				
	🖌 Smooth Gr	rid Colors							

Allowable Paths

 In PBR Pixel Sampling is Tied to Allowable Paths

Also...

- under Shading
- Look at Reflect Limit, Refract Limit, Diffuse Limit

NxN Pixel Sample is fired off for each Pass Selected

