
H16	Mantra	User	Guide	
	

	

Packed	Primitives	
	

What	Are	Packed	Primitives?	
Packed	Primitives	are	a	way	to	express	a	procedure	to	generate	geometry	at	render	time.	
	
Packed	Primitives	have	information	about	other	pieces	of	geometry	embedded	inside	of	them.	
This	information	could	be	an	actual	piece	of	geometry	stored	in	memory,	a	reference	to	a	
smaller	part	of	another	piece	of	geometry,	or	even	a	path	to	geometry	stored	on	disk.		
	
The	information	can	then	be	used	throughout	Houdini	to	more	efficiently	represent	geometry	
in	the	viewport,	in	the	bullet	solver,	and	in	Mantra.	
	

The	Types	of	Packed	Primitives	
Packed	Primitives	can	“embed”	different	types	of	data	about	geometry	for	use	in	different	
scenarios.	Each	of	these	Packed	Primitive	Types	have	advantages	and	limitations	and	are	
generally	tailored	to	be	used	in	specific	circumstances.	

	
In	Memory	Packed	Primitives	

An	“In	Memory”	packed	primitive	is	generated	by	“Packing”	the	geometry	directly	in	a	SOP	
network.	This	creates	a	Packed	Geometry	Primitive	with	an	embedded	reference	to	the	current	
version	of	your	geometry	stored	in	RAM.	
	
In	practice,	the	“embedded”	geometry	essentially	becomes	a	single	un-editable	“primitive”	with	
a	single	transform.	
	

Advantages	
Because	the	“embedded	geometry”	simply	refers	to	a	piece	of	geometry	in	memory,	copying	a	
packed	primitive	creates	a	copy	of	the	reference	rather	than	a	copy	of	the	geometry	itself.	This	
means	that	the	referenced	geometry	is	shared	among	all	copies	of	the	packed	primitive.	This	
stands	in	contrast	to	copying	standard	Houdini	geometry,	which	creates	duplicates	of	all	points,	
primitives,	etc.,	in	the	original	piece	of	geometry.	



H16	Mantra	User	Guide	
	

	

	

	
	
Copies	of	packed	primitives	use	less	memory,	are	simpler	to	transform,	and	can	be	drawn	more	
efficiently	in	the	viewport	or	rendered	by	Mantra.		
	
Additionally,	because	the	geometry	can	exist	in	a	traditional	SOP	network	before	being	packed,	
you	can	easily	generate	procedural	geometry	which	adapts	to	your	scene,	use	stamping	to	
generate	variations	of	your	packed	geometry,	or	make	interactive	edits	to	your	geometry	while	
viewing	the	results	live.	Essentially,	working	with	“In	Memory”	Packed	Primitives	is	a	more	
interactive	and	user-friendly	version	of	traditional	instancing	workflows.	
	
Individual	copies	of	an	“In	Memory”	Packed	Primitive	can	also	be	“Unpacked”	in	a	SOP	network,	
loading	the	referenced	geometry	into	memory.	This	allows	you	to	generate	procedural	
workflows	which	are	a	hybrid	of	traditional	Houdini	geometry	and	Packed	Geometry	Primitives.	
	

A	Helpful	Reminder	
“Packing”	geometry	has	an	associated	memory	cost.	Since	you	are	storing	the	original	piece	of	
geometry	in	RAM	as	well	as	the	memory	overhead	for	the	“In	Memory”	Packed	Primitive	itself,	
a	single	packed	primitive	is	not	necessarily	any	more	efficient	than	the	original	piece	of	
geometry.	The	benefit	of	“In	Memory”	Packed	Primitives	comes	from	the	efficient	
representation	of	large	number	of	copies	where	the	referenced	geometry	can	be	shared.	
	



H16	Mantra	User	Guide	
	

	

This	is	important	to	remember	when	copy-stamping	packed	geometry.	If	every	instance	of	your	
packed	geometry	is	unique,	then	you	will	not	receive	any	of	the	memory	or	performance	
benefits.	In	fact,	in	this	scenario	you	will	use	more	memory	than	using	standard	Houdini	
geometry,	since	each	packed	primitive	has	its	own	data	on	top	of	the	embedded	geometry.	
	
TIP:	It’s	possible	to	somewhat	offset	the	cost	of	packing	stamped	geometry	when	there	are	
limited	numbers	of	stamped	variations	using	the	'cache	stamping'	parameter	-	see	the	help	for	
the	Copy	SOP	for	more	info.	
	

Packed	Disk	Primitives	
A	“Packed	Disk”	Primitive	has	an	embedded	“path”	to	a	file	on	disk	rather	than	a	reference	to	a	
piece	of	geometry	stored	in	RAM.	Generally	speaking,	“Packed	Disk”	primitives	are	standard	
Houdini	Geometry	which	have	been	written	to	disk	as	a	.bgeo,	or	.bgeo.sc	file	then	loaded	into	
Houdini	through	a	File	SOP	as	a	“Packed	Disk	Primitive”.	
	
A	“Packed	Disk”	primitive	behaves	in	a	very	similar	fashion	to	“In	Memory”	Packed	Primitives,	
the	“embedded”	geometry	is	represented	as	a	single	un-editable	primitive	with	a	single	
transform	
	

Advantages	
Much	like	the	“In	Memory”	packed	primitives,	a	“Packed	Disk”	primitive	is	an	excellent	choice	
for	efficiently	representing	copies	of	geometry	in	the	viewport	and	in	Mantra.	Copying	a	
“Packed	Disk”	primitive	creates	a	copy	of	the	path	to	the	geometry	on	disk	rather	than	a	
duplicate	of	the	geometry	itself.	
	
Another	advantage	shared	between	“In	Memory”	and	“Packed	Disk”	primitives	comes	from	
how	the	geometry	can	be	represented	in	the	viewport.	The	viewport	does	not	copy	the	
geometry,	but	simply	draws	it	multiple	times	with	different	transforms.	This	means	that	the	
viewport	can	also	refer	to	a	smaller	subset	of	the	referenced	geometry	and	display	that	instead.	
	



H16	Mantra	User	Guide	
	

	

	
	
Since	“Packed	Disk”	primitives,	by	their	nature,	are	loaded	from	pre-generated	geometry	stored	
on	disk	they	are	less	dynamic	than	“In	Memory”	packed	primitives	whose	embedded	geometry	
can	be	generated	procedurally.	The	only	way	to	make	edits	to	“Packed	Disk”	primitives	is	to	
“unpack”	them,	however	this	causes	the	geometry	to	be	loaded	into	memory	as	standard	
Houdini	geometry,	negating	the	benefits.	In	this	sense,	“Packed	Disk”	primitives	are	less	flexible	
than	“In	Memory”	packed	primitives	and	best	used	for	static	geometry.	
	
However,	there	are	several	advantages	“Packed	Disk”	primitives	have	over	“In	Memory”	packed	
primitives	when	used	at	render	time.	When	generating	an	IFD	(A	file	which	contains	a	complete	
description	of	a	scene	and	how	to	render	It.),	a	“Packed	Disk”	primitive	can	be	represented	
simply	as	path	to	the	file	on	disk.	In	contrast,	an	“In	Memory”	primitive	must	have	the	entire	
piece	of	Geometry	copied	into	the	IFD	in	order	to	be	referenced	by	Mantra.	Both	of	these	
methods	are	superior	to	standard	Houdini	geometry	which	must	include	all	of	the	geometry	as	
well	as	all	of	the	duplicates	of	the	geometry	in	the	IFD	file.	



H16	Mantra	User	Guide	
	

	

	
	

	
	



H16	Mantra	User	Guide	
	

	

	
	
Additionally,	Mantra	never	has	to	load	into	memory	a	“Packed	Disk”	primitive	which	isn’t	
currently	being	used	to	render	the	scene.	Instead,	“Packed	Disk”	geometry	is	streamed	into	the	
scene	when	necessary	and	then	unloaded	when	no	longer	in	use.		
	
This	means	that	single	copies	of	“Packed	Disk”	primitives	can	still	be	useful	at	render	time,	
saving	memory	in	the	IFD	file,	as	well	as	reducing	the	amount	of	geometry	Mantra	needs	to	
load	at	any	given	time.	
	
The	lightweight	representation	of	“Packed	Disk”	primitives	makes	them	ideal	candidates	for	
scene	assembly,	especially	for	static	background	objects.	That	said,	the	very	small	memory	
footprint	in	the	IFD	file	also	makes	them	very	useful	for	objects	with	large	on-disk	footprints.	
(Like	Fluid,	Smoke,	or	RBD	simulations).	
	

Packed	Fragments	
A	“Packed	Fragment”	primitive	is	generated	by	“Packing”	some	piece	of	geometry	along	with	a	
"name	attribute”.	Each	piece	of	the	geometry	with	a	unique	“name	attribute”	will	become	a	
“Packed	Fragment”	primitive	with	an	embedded	reference	to	the	“complete”	piece	of	geometry	
which	is	shared	across	all	“Fragments”.	
	
In	practice,	each	“Fragment”	essentially	becomes	a	single	un-editable	“primitive”	with	a	single	
transform.	



H16	Mantra	User	Guide	
	

	

Advantages	
“Packed	Fragment”	primitives	are	ideal	for	representing	many	pieces	of	a	greater	“complete”	
piece	of	geometry.	Each	“Fragment”	refers	to	some	subset	of	the	embedded	geometry	which	is	
shared	across	all	“Fragments”.	When	“Unpacked”,	only	the	smaller	subset	of	geometry	will	be	
loaded	into	memory.	
	
Additionally,	because	each	“Packed	Fragment”	represents	a	single	reference	and	a	transform,	
they	are	useful	for	cases	where	each	“Fragment”	will	receive	some	unique	transformation	such	
as	a	Rigid	Body	Simulation.	This	stands	in	contrast	to	standard	Houdini	geometry	which	does	
not	share	its	geometry,	so	each	individual	piece	must	be	considered	its	own	object.	
	



H16	Mantra	User	Guide	
	

	

	
	
“Packed	Fragment”	primitives	use	less	memory,	are	simpler	to	transform,	and	are	more	
efficiently	displayed	in	the	viewport.	
	

	

	



H16	Mantra	User	Guide	
	

	

A	Helpful	Reminder	
Each	“Packed	Fragment”	contains	a	reference	to	the	larger	piece	of	embedded	geometry	stored	
in	memory.	When	you	have	many	“Fragments”,	this	is	a	very	efficient	way	of	representing	the	
geometry	because	each	“Fragment”	only	refers	to	a	small	subset	of	the	shared	Geometry.	
However,	if	you	were	to	delete	many	of	your	fragments,	leaving	only	a	small	number,	each	
“Packed	Fragment”	is	still	referring	to	the	original	“complete”	piece	of	geometry	which	is	stored	
in	memory.	This	can	potentially	mean	a	large	amount	of	memory	overhead	which	is	no	longer	
necessary.		
	
Consider	“Unpacking”	your	fragments	when	you	have	much	fewer	“Fragments”	than	in	the	
original	piece	of	Geometry.	
	
	

Rendering	Packed	Primitives	
Packed	Primitives	are	extremely	useful	for	rendering	in	Mantra.	In	general,	the	proper	use	of	
packed	primitives	will	allow	you	to	increase	the	speed	of	your	renders	as	well	as	reduce	the	
overall	amount	of	memory	needed.	Additionally,	IFD	generation	will	be	faster	and	use	less	on-
disk	memory.	
	
However,	it	is	important	to	understand	how	Mantra	deals	with	Packed	Primitives	and	the	data	
stored	inside	of	them	in	order	to	take	full	advantage	of	them	at	render	time.	
	

Material	Assignment	
With	standard	Houdini	geometry,	Material	assignment	can	occur	at	two	levels	–	the	object	level	
(On	the	object	Node),	or	the	primitives	inside	of	the	object	(Using	a	Material	SOP).	Materials	
assigned	at	“lower	levels”	override	materials	in	the	higher	levels.	
	
When	sending	a	scene	to	be	rendered,	it	is	first	analyzed	to	see	which	materials	will	actually	be	
needed	in	the	final	render.	Houdini	checks	the	objects	for	any	material	assignments,	along	with	
any	geometry	attributes	which	apply	materials,	then	makes	sure	to	include	the	appropriate	
Shaders	in	the	IFD	file.		
	



H16	Mantra	User	Guide	
	

	

	
	

When	using	Packed	Geometry,	this	process	is	made	more	complex	by	adding	a	third	level	of	
material	assignment	–	materials	assigned	by	attributes	inside	the	Packed	Primitive.	Like	the	
previous	example,	materials	assigned	at	“lower	levels”	override	
Materials	in	the	higher	levels.	
	
However,	in	this	case,	when	the	scene	is	sent	to	be	rendered,	the	material	assignments	“inside”	
the	packed	primitives	are	hidden	from	Houdini.	(Remember	the	Packed	Geometry	may	simply	
refer	to	an	object	on	disk).	This	means	that	Houdini	will	be	unable	to	add	the	appropriate	
Shaders	to	the	IFD	file	for	use	at	render	time.	During	rendering,	Mantra	will	unpack	the	object,	
find	the	material	assignment,	but	it	will	not	have	the	necessary	Shaders	to	apply	to	the	object.	

	
The	solution	to	this	problem	is	to	tell	Houdini	to	include	the	Shaders	in	the	IFD	regardless	of	
whether	or	not	they	have	been	assigned	to	any	objects	or	primitives.	On	the	Mantra	node,	
there	is	an	option	called	“Save	All	SHOPS”	which	will	embed	all	Shaders	in	your	scene	in	the	IFD.	
(This	will	increase	the	on-disk	size	of	your	IFD	by	a	small	amount).	This	way,	when	Mantra	
unpacks	the	geometry	at	render	time	and	finds	the	material	assignment,	the	necessary	Shaders	
will	be	available.	



H16	Mantra	User	Guide	
	

	

	
	
In	general,	when	working	with	Packed	Geometry,	it	is	important	to	remember	that	“packed”	
data	is	only	accessible	once	it	has	been	unpacked.	For	more	information	about	assigning	
shaders	and	overriding	shading	parameters	“inside”	Packed	Geometry,	please	see	the	
documentation	on	Material	Style	Sheets.	
	
	

Displacement	and	Subdivision	Surfaces	
In	general,	when	using	Packed	Geometry,	displacement	shading	and	subdivision	surfaces	are	
handled	in	the	same	way	as	with	any	other	piece	of	geometry.	However,	if	you	are	primarily	
using	your	Packed	Geometry	as	instanced	geometry,	then	some	care	must	be	taken	to	get	the	
most	out	of	your	workflow.	
	
Before	rendering	a	displaced	or	a	subdivided	surface,	the	geometry	is	“diced”	into	smaller	
primitives	such	that	there	will	be	one	primitive	for	every	pixel	(with	shading	quality	set	to	1).	
This	means	that	objects	closer	to	the	camera	will	be	diced	more	than	objects	in	the	distance	
(which	have	less	pixel	coverage).	However,	for	instancing,	this	can	cause	a	problem.	As	
discussed	previously,	the	benefit	of	instancing	comes	from	the	fact	that	geometry	is	shared	
across	all	instances.	In	the	case	of	displacements	or	subdivision	surfaces,	the	objects	must	be	
evaluated	and	diced	individually	which	means	the	geometry	is	no	longer	being	shared.	
	
To	avoid	this	problem,	there	is	a	rendering	property	which	can	be	added	to	the	object	
containing	your	instances	–	“vm_sharedisplace”.	Enabling	this	parameter	will	tell	Mantra	to	use	
the	highest	level	of	dicing	needed	for	the	scene	on	one	object	and	then	share	the	diced	
geometry	across	all	instances.	Keep	in	mind	that	this	means	that	objects	far	away	from	the	
camera	will	have	the	same	level	of	dicing	as	objects	very	close	to	the	camera.	There	is	some	
potential	for	this	to	cause	problems	in	your	renders,	however,	the	benefits	of	instancing	the	
geometry	most	likely	outweigh	any	downside.	
	



H16	Mantra	User	Guide	
	

	

In	the	worst	case	scenario,	where	“incorrect”	dicing	levels	cause	problems	in	your	rendering,	
you	could	“split”	your	instances	into	two	objects,	foreground	and	background,	so	that	distant	
objects	are	evaluated	separately	from	nearby	ones.	Alternatively,	you	could	also	unpack	any	
objects	close	to	the	camera,	essentially	removing	them	from	the	instancing	hierarchy.		
	
	
	
	
	


