Houdini 17.0 Nodes Dynamics nodes

Merge dynamics node

Merges multiple streams of objects or data into a single stream.

On this page

The Merge DOP takes any number of separate streams of objects or data and merges them into a single stream. Data and objects cannot be merged into a single stream. All inputs must be object streams, or all inputs must be data.

Merging objects does not imply any relationship between those objects. However, for convenience, the Affector Relationship parameter can be turned on to create affector relationships between the different streams of objects. The same functionality can be achieved with Group and Affector DOPs, but many more nodes would be required. Objects with the Intangible Value set will not have a relationship created by a merge node.

When merging data, any connection to this node’s output will be treated as if every input of this node is connected to it. This is useful when dealing with digital assets which provides only a single data input but to which you may wish to attach several pieces of data.

Similarly, this node can be used to allow a digital asset to output several pieces of data through a single data output. This node also provides a convenient visual method of grouping several pieces of data into a single stream for easier wiring.

Note

Bypassing this node disables the relationship calculations and only processes the first input.

Parameters

Activation

When this parameter value is zero no relationships will be added. When it is one, the Affector Relationship will control the addition of relationships. In any case, the objects are merged into a single stream.

Affector Relationship

If this node is merging streams of simulation objects, this parameter sets up affector relationships between the objects.

No Change

No new affector relationships are created between the input objects.

Left Inputs Affect Right Inputs

Given a series of inputs 1, 2, 3, and so on, the objects connected to input 1 become affectors for the objects on inputs 2, 3, and so on. The objects at input 2 become affectors of the objects at input 3 and beyond. Using this option will cause the input objects to be solved in the order in which they are connected to this node.

Mutual

All objects on all input streams become mutual affectors.

Relationship

When merging streams of objects, this determines what sort of relationship should be created between the streams. Useful choices are:

None

No affector relationship is created - the same as setting No Change in the Affector Relationship field.

Constraint

Used internally to define two objects that have a constraint between them.

Pump

Affected objects will set their local velocities to match the velocity of the source object. Applies to fluid objects.

Sink

Affected objects will delete their volume where it contacts the affectors. Applies to fluid objects.

Group

Used internally to make objects part of the same group.

Collide

Affected objects will respond to collisions from affector objects.

Target

A place holder affector for user defined effects. Used by the Gas Target Forces.

Source

Affected objects will use the affector objects as sources for operations such as creating liquid or smoke density.

Empty

Enforces a particular solve order - affected objects will be solved after affector objects - but no other intrinsic meaning.

This is useful when SOP Solvers refer to other objects creating a dependency that isn’t visible to the DOP Engine.

Inputs

All

All the objects or data connected to the inputs of this node are fed out through the single output.

Outputs

First

All the objects or data connected to the inputs of this node are fed out through the single output.

Locals

ST

This value is the simulation time for which the node is being evaluated.

This value may not be equal to the current Houdini time represented by the variable T, depending on the settings of the DOP Network Offset Time and Time Scale parameters.

This value is guaranteed to have a value of zero at the start of a simulation, so when testing for the first timestep of a simulation, it is best to use a test like $ST == 0 rather than $T == 0 or $FF == 1.

SF

This value is the simulation frame (or more accurately, the simulation time step number) for which the node is being evaluated.

This value may not be equal to the current Houdini frame number represented by the variable F, depending on the settings of the DOP Network parameters. Instead, this value is equal to the simulation time (ST) divided by the simulation timestep size (TIMESTEP).

TIMESTEP

This value is the size of a simulation timestep. This value is useful to scale values that are expressed in units per second, but are applied on each timestep.

SFPS

This value is the inverse of the TIMESTEP value. It is the number of timesteps per second of simulation time.

SNOBJ

This is the number of objects in the simulation. For nodes that create objects such as the Empty Object node, this value will increase for each object that is evaluated.

A good way to guarantee unique object names is to use an expression like object_$SNOBJ.

NOBJ

This value is the number of objects that will be evaluated by the current node during this timestep. This value will often be different from SNOBJ, as many nodes do not process all the objects in a simulation.

This value may return 0 if the node does not process each object sequentially (such as the Group DOP).

OBJ

This value is the index of the specific object being processed by the node. This value will always run from zero to NOBJ-1 in a given timestep. This value does not identify the current object within the simulation like OBJID or OBJNAME, just the object’s position in the current order of processing.

This value is useful for generating a random number for each object, or simply splitting the objects into two or more groups to be processed in different ways. This value will be -1 if the node does not process objects sequentially (such as the Group DOP).

OBJID

This is the unique object identifier for the object being processed. Every object is assigned an integer value that is unique among all objects in the simulation for all time. Even if an object is deleted, its identifier is never reused.

The object identifier can always be used to uniquely identify a given object. This makes this variable very useful in situations where each object needs to be treated differently. It can be used to produce a unique random number for each object, for example.

This value is also the best way to look up information on an object using the dopfield expression function. This value will be -1 if the node does not process objects sequentially (such as the Group DOP).

ALLOBJIDS

This string contains a space separated list of the unique object identifiers for every object being processed by the current node.

ALLOBJNAMES

This string contains a space separated list of the names of every object being processed by the current node.

OBJCT

This value is the simulation time (see variable ST) at which the current object was created.

Therefore, to check if an object was created on the current timestep, the expression $ST == $OBJCT should always be used. This value will be zero if the node does not process objects sequentially (such as the Group DOP).

OBJCF

This value is the simulation frame (see variable SF) at which the current object was created.

This value is equivalent to using the dopsttoframe expression on the OBJCT variable. This value will be zero if the node does not process objects sequentially (such as the Group DOP).

OBJNAME

This is a string value containing the name of the object being processed.

Object names are not guaranteed to be unique within a simulation. However, if you name your objects carefully so that they are unique, the object name can be a much easier way to identify an object than the unique object identifier, OBJID.

The object name can also be used to treat a number of similar objects (with the same name) as a virtual group. If there are 20 objects named "myobject", specifying strcmp($OBJNAME, "myobject") == 0 in the activation field of a DOP will cause that DOP to operate only on those 20 objects. This value will be the empty string if the node does not process objects sequentially (such as the Group DOP).

DOPNET

This is a string value containing the full path of the current DOP Network. This value is most useful in DOP subnet digital assets where you want to know the path to the DOP Network that contains the node.

Note

Most dynamics nodes have local variables with the same names as the node’s parameters. For example, in a Position node, you could write the expression:

$tx + 0.1

…to make the object move 0.1 units along the X axis at each timestep.

Examples

The following examples include this node.

CountImpacts Example for Count channel node

This example demonstrates how to count impacts from a DOPs simulation using the Count CHOP. Then, using the values from the Count CHOP, we generate copies of a teapot.

DynamicLights Example for Dynamics channel node

This example demonstrates how to use the Dynamics CHOP to extract impact data from a DOPs simulation, and then modify the data to control lights in the scene.

ExtractTransforms Example for Dynamics channel node

This example demonstrates the use of the Dynamics CHOP to pull transformation information out of a DOP simulation and apply it to Objects.

HoldLight Example for Hold channel node

This example uses the Hold CHOP in conjunction with the Dynamics CHOP to hold a light at the position of an impact from a DOPs simulation until a new impact occurs.

Lookup Example for Lookup channel node

This example demonstrates how to use the Lookup CHOP to play animation based on an event, or trigger.

AnimatedActiveState Example for Active Value dynamics node

This example shows how to use the Active Value DOP to animate the Active state of an object. When an object is not active (it is passive), it is not simulated. To keyframe both the active state of an object and its motion while passive, use the RBD Keyframe Active DOP.

AutoFreezeRBD Example for Active Value dynamics node

This example shows a system for automatically detecting when RBD objects achieve a rest state and then turning off their active status. This will freeze them in place reducing computation time and jitter.

SimpleAffector Example for Affector dynamics node

This example shows how to use the Affector DOP to set up a variety of affector relationships between a set of RBD Objects. It also shows how these different affector relationships affect the simulation.

ClipLayerTrigger Example for Agent Clip Layer dynamics node

This example demonstrates how to use the Agent Clip Layer DOP to apply a clip to the upper body of an agent. The clip is activated when the agent is inside a bounding box.

LookAt Example for Anchor: Align Axis dynamics node

This example shows how to build a Look At Constraint which keeps a teapot pointed at a bouncing ball. It shows how to build constraints out of anchors and constraint relationships.

ApplyRelationship Example for Apply Relationship dynamics node

This example shows how you can use the Apply Relationship DOP to add pin constraints to wire objects.

BridgeCollapse Example for Apply Relationship dynamics node

This example shows how to use the Apply Relationship DOP to propagate constraints automatically and create an RBD simulation of a collapsing bridge.

ConstrainedTeapots Example for Apply Relationship dynamics node

This example demonstrates how the Apply Relationship DOP can be used to create multiple constraints with the RBD Pin Constraint node.

MutualConstraints Example for Apply Relationship dynamics node

This example demonstrates how to build mutual constraints between two DOP objects using the Apply Relationship node.

SimpleBlend Example for Blend Solver dynamics node

This example demonstrates how to use the Blend Solver. In this case the Blend Solver is used to blend between an RBD solution and a keyframed solution.

BuoyancyForce Example for Buoyancy Force dynamics node

This example shows how to extract a surface field from another object to use as a buoyancy force source.

BlanketBall Example for Cloth Object dynamics node

This cloth example shows you how to simulate a ball bouncing on a blanket pinned at all four corners.

ClothAttachedDynamic Example for Cloth Object dynamics node

This example shows a piece of cloth attached to a dynamics point on a rigid object.

ClothFriction Example for Cloth Object dynamics node

This cloth example demonstrates the Friction parameter on the Physical properties of a cloth object.

ClothUv Example for Cloth Object dynamics node

This is an example that shows how you can specify the warped and weft directions on a triangulated cloth planel using uv coordinates.

Because the uv directions are aligned with the xy directions of the grid, the result looks nearly identical to a quad grid, even though the mesh is triangulated.

The little blue and yellow lines visualize the directions of the cloth fabric. This is enabled in the Visualization tab of both cloth objects.

DragCloth Example for Cloth Object dynamics node

This example shows how adding Normal and Tanget Drag to a cloth object can influence its behaviour.

MultipleSphereClothCollisions Example for Cloth Object dynamics node

This example shows a pieces of cloth with different properties colliding with spheres. By adjusting the stiffness, bend, and surfacemassdensity values, we can give the cloth a variety of different behaviours.

PanelledClothRuffles Example for Cloth Object dynamics node

This example demonstraits a paneling workflow and use of the seamangle primitive attribute to create a cloth ruffle attached to a static object.

AnchorPins Example for Constraint Network dynamics node

This example demonstrates how different anchor positions can affect pin constraints.

AngularMotorDenting Example for Constraint Network dynamics node

This example demonstrates how angular motors can be used with pin constraints to create a denting effect.

BreakingSprings Example for Constraint Network dynamics node

This example shows how to use a SOP Solver to break spring constraints in a constraint network that have stretched too far.

Chains Example for Constraint Network dynamics node

This example shows how to create a chain of objects that are connected together by pin constraints.

ControlledGlueBreaking Example for Constraint Network dynamics node

This example shows how to gradually remove glue bonds from a constraint network and control the crumbling of a building.

GlueConstraintNetwork Example for Constraint Network dynamics node

This example shows how to create a constraint network to glue together adjacent pieces of a fractured object. It also shows how primitive attributes such as 'strength' can be used to modify properties of individual constraints in the network.

Hinges Example for Constraint Network dynamics node

This example demonstrates how to use pin constraints to create hinges between objects.

PointAnchors Example for Constraint Network dynamics node

This example shows how to create a basic constraint network with point anchors.

SoftConstraintNetwork Example for Constraint Network dynamics node

This example shows how to create a simple network of soft constraints, which are used to allow an object to bend before breaking.

SpringToGlue Example for Constraint Network dynamics node

This example shows how to create spring constraints between nearby objects, and then change those constraints to glue constraints during the simulation.

AutoFracturing Example for Copy Objects dynamics node

This example shows how to use the Copy Object DOP, in conjunction with a Multi Solver, to automatically break an RBD object in half whenever it impacts another object.

SimpleCopy Example for Copy Objects dynamics node

This example demonstrates the use of the Copy Objects DOP. A single RBD Object is copied 100 times, and assigned a random initial velocity, and a position based on some grid geometry. These 100 spheres are then dropped onto a ground plane.

AnimatedStaticAgents Example for Crowd Solver dynamics node

This example file demonstrates how to set up "animated static" agents for the crowd solver. These agents follow SOP-level animation and can be used for avoidance or turned into ragdolls.

CrowdHeightField Example for Crowd Solver dynamics node

This example demonstrates using heightfields for terrain adaptation in the crowd solver, and for collisions against ragdolls in the Bullet solver.

FootLocking Example for Crowd Solver dynamics node

This example demonstrates how to set up foot locking for an agent.

PartialRagdolls Example for Crowd Solver dynamics node

This example demonstrates how to set up a partial ragdoll, where a subset of the agent’s joints are simulated as active objects by the Bullet solver and the remaining joints are animated.

PinnedRagdolls Example for Crowd Solver dynamics node

This example demonstrates how to set up constraints to attach a ragdoll to an external object, and how to use motors to drive an active ragdoll with an animation clip.

Formation Crowd Example Example for Crowd Solver dynamics node

Crowd example showing a changing formation setup

The setup creates an army of agents. There are two paths created. Middle part of the army starts moving and then splits into two formations. One goes to the left, the other groups keeps marching forward and slowly changes formation to a wedge shape.

To keep the agents in formation a custom geo shape is used. It’s points are used as goals for indiviudal agents. Using blendshapes the shape can change allowing for different formation changes. Dive inside the crowdsource object to see the construction.

Note

The animation clips need to be baked out before playing the scene. This should happen automatically if example is created from Crowds shelf. Otherwise save scene file to a location of your choice and click Render on '/obj/bake_cycles' ropnet to write out the files. The default path for the files is ${HIP}/agents.

Stadium Crowd Example Example for Crowd Solver dynamics node

Crowd example showing a stadium setup

The setup creates a stadium crowd. The rotating cheer_bbox object is used as a bounding box for the agents. When they are inside it it will trigger a transition from a sitting to a cheering state. After a few seconds the cheering crowd sits back down by transitioning into a sitting state.

Note

The animation clips need to be baked out before playing the scene. This should happen automatically if example is created from Crowds shelf. Otherwise save scene file to a location of your choice and click Render on '/obj/bake_cycles' ropnet to write out the files. The default path for the files is ${HIP}/agents.

Tip

To only see a section of the crowd for quicker preview there’s a switch node in /obj/crowdsource/switch_all_subsection. When 0 it will show all agents, when set to 1 will only show a small section.

Street Crowd Example Example for Crowd Solver dynamics node

Crowd example showing a street setup with two agent groups

The setup creates two groups of agents. The yellow agents are zombies which follow a path of the street. The blue agents are living pedestrians that wander around until they come into proximity of the zombies and then they swtich into a running state.

Triggers to change agent states are setup in the crowd_sim dopnet. The zombies group uses proximity to the stoplights and the color of the light to transition into a standing state when lights are red. The living group transition into a running state when they get close to the zombie agents.

Note

The animation clips need to be baked out before playing the scene. This should happen automatically if example is created from Crowds shelf. Otherwise save scene file to a location of your choice and click Render on '/obj/bake_cycles' ropnet to write out the files. The default path for the files is ${HIP}/agents.

ClipTransitionGraph Example for Crowd Transition dynamics node

This example demonstrates how to use a clip transition graph to provide transition clips for state transitions.

CrowdTriggers Example for Crowd Trigger dynamics node

This example file demonstrates how the built-in trigger types for the Crowd Trigger DOP can be used.

FieldForceSmoke Example for Field Force dynamics node

Extracts the velocity field from a smoke simulation to use as a wind force on a POP simulation.

FromRBD Example for Field Force dynamics node

This example demonstrates how to use another active RBD Object as the source for the Field Force DOP. Two balls bounce inside a cube, one of the balls is set to repel the other according to force values stored on its geometry.

fieldforce Example for Field Force dynamics node

This example demonstrates the use of the Field Force DOP. It shows how to use a particle system to blow around smoke.

CacheToDisk Example for File dynamics node

This example shows how to use the File DOP to cache a simulation to disk and read it back in.

FEMSpheres Example for finiteelementsolver dynamics node

This example demonstrates how to use the FEM Solver to deform spheres when they collide with the ground plane. The spheres have particle based animation on them prior to collision with the ground and are swapped to the FEM solver on collision.

DensityViscosity Example for FLIP Solver dynamics node

This example demonstrates two fluids with different densities and viscosities interacting with a solid object.

FlipColorMix Example for FLIP Solver dynamics node

This example demonstrates the use of the Flip Solver to mix the colors of a red fluid with a blue fluid to form a purple fluid.

FlipColumn Example for FLIP Solver dynamics node

This example demonstrates how a mixture of fluid colours can have their colour changed by a collision with a static object.

FlipFluidWire Example for FLIP Solver dynamics node

This example demonstrates the use of the Flip Solver and the Fluid Force DOP. The Fluid Force DOP is used to apply a drag force on a wire object according to the motions of a flip fluid. The drag force is only applied at locations where fluid exists in the fluid object.

VariableViscosity Example for FLIP Solver dynamics node

This example demonstrates interaction between three fluids of varying viscosity and a moving collision object.

FluidWireInteraction Example for Fluid Force dynamics node

This example demonstrates the use of the Fluid Force DOP. The Fluid Force DOP is used to apply a drag force on a wire object according to the motions of a fluid object. The drag force is only applied at locations where fluid exist in the fluid object.

BallInTank Example for Fluid Object dynamics node

This example shows an RBD ball being thrown into a tank of liquid.

FillGlass Example for Fluid Object dynamics node

Fills an RBD container with fluid that enters the simulation by being sourced from another RBD object.

FluidFeedback Example for Fluid Object dynamics node

This example shows a ball falling into a tank with feedback. This couples the RBD simulation with the Fluid simulation, causing the ball to float rather than sink.

PaintedGrog Example for Fluid Object dynamics node

This example creates a torus of paint which is dropped on the Grog character. The Grog character is then colored according to the paint that hits him. This also shows how to have additional color information tied to a fluid simulation.

RiverBed Example for Fluid Object dynamics node

A simple river bed has a fluid source and fluid sink set up so that liquid rushes down the river.

VariableDrag Example for Fluid Object dynamics node

This example shows how to vary the drag in a fluid simulation. It provides examples of using a specified field to be a high drag zone, of automatically applying drag only to the fluid surface, and of applying negative drag to an area to make the fluid more volatile.

HotBox Example for Gas Calculate dynamics node

This example shows how to take any object with it’s volume representation and add it to the temperature field. You can change the temperature of the object in two ways: by adjusting the volume density value or by adjusting the Gas Calculate microsolver DOP’s source’s Pre-Multiply field.

DiffuseSmoke Example for Gas Diffuse dynamics node

This example demonstrates how to diffuse the density of a smoke simulation using the Gas Diffuse DOP.

CombinedSmoke Example for Gas Embed Fluid dynamics node

In this example, two smoke volumes are merged together using a Gas Embed Fluid DOP and some feathering to help provide a smoother transition between the volumes.

EqualizeFlip Example for Gas Equalize Volume dynamics node

This example demonstrates how the Gas Equalize Volume dop can be used to preserve the volume in a fluid simulation.

EqualizeLiquid Example for Gas Equalize Volume dynamics node

This example demonstrates how the Gas Equalize Volume dop can be used to preserve the volume in a fluid simulation.

dopexample_gasnetfetchdata Example for Gas Net Fetch Data dynamics node

This example demonstrates the use of Gas Net Fetch Data to have two separate dop simulations exchange data.

UpresRetime Example for Gas Up Res dynamics node

This example demonstrates how the Up Res Solver can now be used to re-time an existing simulation. The benefit of this is that one can simply change the speed without affecting the look of the sim. On the up-res solver there is a tab called Time. The Time tab offers various controls to change the simulation’s speed.

grass

This example simulates grass being pushed down by an RBD object. Fur Objects are used to represent the blades of grass and Wire Objects are used to simulate the motion. When a single Fur Object is used to represent the grass, neighbouring blades of grass will have similar motion. Additional objects with different stiffness values can be used to make the motion less uniform. When "Complex Mode" is enabled, two objects are used to represent the grass. The stiffness of each set of curves can be controlled by adjusting the "Angular Spring Constant" and "Linear Spring Constant" parameters on the corresponding Wire Objects.

GuidedWrinkling Example for FEM Hybrid Object dynamics node

This is a setup for guided wrinkling using the hybrid object. The first sim creates a detailed mesh consisting of both tets and triangles that doesn’t have any wrinkles yet. The second sim is targeted to the animation creates by the first sim and this adds in the wrinkles.

MagnetMetaballs Example for Magnet Force dynamics node

This example demonstrates how to use the Magnet Force node on a group of metaballs to force the fragments of an object outwards at the moment of impact.

SimpleMagnets Example for Magnet Force dynamics node

This example demonstrates how the magnetforce DOP can be used with a pair of metaballs (one positive and one negative) to attract/repulse an RBD sphere.

SimpleMultiple Example for Multiple Solver dynamics node

This examples demonstrates how to use a Multiple Solver. In this example, the motion of an object is controlled by an RBD Solver while the geometry is modified by a SOP Solver.

VolumeSource Example for Particle Fluid Emitter dynamics node

This example demonstrates the use of a volume emitter to fill a container with fluid. The volume of the inside of a tank is specified as volume emission geometry, and particles are emitted randomly at points inside of this geometry for a specified number of frames. This example uses an SPH fluid.

Particle fluid buoyancy

This example demonstrates how to couple the Particle Fluid with an RBD object so they both affect each other. The result is a buoyant sphere.

FluidGlass Example for Particle Fluid Solver dynamics node

This example demonstrates how to get a smooth fluid stream to pour into a glass.

PressureExample Example for Particle Fluid Solver dynamics node

This is a simple example demonstrating pressure-driven flow with no viscosity. This example also demonstrates the use of a constantly emitting source of particle fluid as well as how to surface the fluid using the Particle Fluid Surface SOP.

ViscoelasticExample Example for Particle Fluid Solver dynamics node

This example demonstrates the use of viscous and elastic forces in a particle-based fluid to generate viscoelastic fluid behaviour. The result is a fluid-like object that tends to resist deformation and retain its shape.

ViscousFlow Example for Particle Fluid Solver dynamics node

This example demonstrates highly viscous fluid flow using particle-based fluids. Fluids of this form could be used to simulate slowly-flowing fluids such as lava or mud.

WorkflowExample Example for Particle Fluid Solver dynamics node

This somewhat complicated example is meant to demonstrate a simple workflow for simulating, storing, surfacing and rendering a particle fluid simulation. Three geometry nodes in the example are named Step 1, Step 2 and Step 3 according to the order in which they are to be used. They write out particle geometry to disk, read the geometry in and surface it, and read the surfaced geometry from disk, respectively. The example also has shaders and a camera built in so that it can be easily rendered.

The fluid animated in this scene models a highly-elastic gelatin-like blob of fluid.

AdvectByFilaments Example for POP Advect by Filaments dynamics node

This example demonstrates how to use POP Advect by Filaments to advect particles using the velocity field of a set of vortex filaments.

AdvectByVolume Example for POP Advect by Volumes dynamics node

This example demonstrates how to use POP Advect by Volumes to advect particles using the velocity from a smoke simulation.

ParticlesAttract Example for POP Attract dynamics node

This example demonstrates how to use the POP Attract node to get a group of particles to follow the motion of an animated sphere. POP Interact and POP Drag nodes are also used in the example to control the interaction between particles and their distance from the sphere.

ParticlesIntercept Example for POP Attract dynamics node

This example demonstrates how to use the POP Attract node to get a particle sim to intercept and follow individual particles.

PointAttraction Example for POP Attract dynamics node

This example demonstrates how to use the POP Attract node with it’s type set to Point in order to control particle attraction on a per point basis.

SphereAxisForce Example for POP Axis Force dynamics node

This example shows three different ways in which the POP Axis Force node can be used with it’s type set to sphere to control your particle simulation.

TorusAxisForce Example for POP Axis Force dynamics node

This example demonstrates how to use the POP Axis Force node to cause a group of particles to billow upwards.

ParticleCollisions Example for POP Collision Detect dynamics node

This example demonstrates the use of the POP Collision Detect node to simulate particles colliding with a rotating torus with animated deformations.

ColorVex Example for POP Color dynamics node

This example shows three different ways to use VEXpressions in your POP Color node to color your particles.

CurveForce Example for POP Curve Force dynamics node

This example demonstrates the use of the POP Curve Force node to control the flow of a particle sim AND a flip fluid sim.

FlockInPops Example for POP Flock dynamics node

This example demonstrates how to control flocks of particles by using the POP Flock node.

CurlForce Example for POP Force dynamics node

This example demonstrates how to use the POP Force node to add curl noise to your particle simulation.

BaconDrop Example for POP Grains dynamics node

This example demonstrates dropping slices of bacon onto a torus. It shows how to extract a 2d object from a texture map and how to repeatedly add the same grain-sheet object to DOPs.

KeyframedGrains Example for POP Grains dynamics node

This example demonstrates keyframing the internal grains of a solid pighead to create an animated puppet.

TargetSand Example for POP Grains dynamics node

This example demonstrates attracting grain simulations to points on the surface of a model.

VaryingGrainSize Example for POP Grains dynamics node

This example demonstrates interacting grain simulations of very different sizes.

SwarmBall Example for POP Interact dynamics node

This example demonstrates the use of the POP Interact node to control the distance between particles and create a ball shaped swarm.

LookatTarget Example for POP Lookat dynamics node

This interactive example demonstrates the use of the POP Lookat node. Hit play and move the green target handle around in the viewport. The cone particles will orient themselves towards the target as you move it around.

DragCenter Example for POP Property dynamics node

This example shows how you can use the Drag Center parameter of the POP Property node to apply an off-center drag to falling objects.

ProximateParticles Example for POP Proximity dynamics node

This example demonstrates how to use POP Proximity node to find nearby particles and set attributes based on their proximity to one another.

CrossTheStreams Example for POP Stream dynamics node

This example shows how the POP Stream node can be used to define streams with different behaviours within your particle simulation.

BillowyTurbine Example for Pyro Solver dynamics node

This example uses the Pyro Solver and a Smoke Object which emits billowy smoke up through a turbine (an RBD Object). The blades of the turbine are created procedurally using Copy, Circle, and Align SOPs.

Stack Example for RBD Auto Freeze dynamics node

Teapots are dropped every ten frames onto a ground plane. The RBD AutoFreeze DOP is used to detect and freeze the teapots that have come to rest, stabilizing and speeding up the simulation.

RagdollExample Example for Cone Twist Constraint dynamics node

This sample creates a simple ragdoll using the cone twist constraint between pieces of the ragdoll.

ShatterDebris Example for RBD Fractured Object dynamics node

This example demonstrates the how the shatter, RBD Fractured Object, and Debris shelf tools can be used to create debris emanating from fractured pieces of geometry.

First, the Shatter tool (from the Model tool shelf) is used on the glass to define the fractures. Then the RBD Fracture tool is used on the glass to create RBD objects out of the fractured pieces. Then the Debris tool is used on the RBD fractured objects to create debris.

StackedBricks Example for RBD Fractured Object dynamics node

This example shows how to create a large number of RBD objects from a single SOP. It also shows how a velocity point attribute can be used to set the initial motion for the objects.

BlendSolverWithRBDGlue

This example shows how to grab animated key frame data from an RBD Glue object and blend it into a simulation of a cube fragmenting into multiple pieces on impact.

BreakingRock

This is an example of how to use the RBD Glue Object node to create an RBD object that automatically breaks apart on collision. It also demonstrates one technique for breaking a model into pieces appropriate for this sort of simulation.

ChoreographedBreakup

This example shows how one can control the break up of any glued object through the use of the RBD State node.

A torus, composed of spheres, is glued together. An additional sweep plane is defined. Any sphere which ends up on the wrong side of the sweep plane is broken off the torus and left to bounce on its own. This lets the break up of the torus to be controlled over many frames.

ChoreographedTubeBreakup

This example shows how one can control the break up of any glued object through the use of the RBD State node.

In this version of the choreographed breakup example, a moving plane is used to choreograph the breakup of a fractured tube. As the plane passes each piece, it is allowed to break off from the rest of the tube.

ShatterGlass

This example uses an RBD projectile to shatter a piece of glass. The glass is made up of simple trangular shards glued together.

This example also demonstrates a situation where using volume based collision detection would not work, and so the objects are treated as infinitely thin surfaces when performing collision detection.

Pendulum Example for RBD Hinge Constraint dynamics node

This example shows how to use the RBD Hinge Constraint to create a hinge joint between an RBD Object and a world space position or other RBD object.

SimpleKeyActive Example for RBD Keyframe Active dynamics node

This example uses the RBD Keyframe Active node to switch from a keyframed animation to an RBD Solver, and back to keyframed animation. This same animation could be created using a Switch Solver or Blend Solver, but this approach is simpler if the only requirement is switching from keyframed to simulated motion for a few RBD Objects.

DeformingRBD Example for RBD Object dynamics node

This example demonstrates a rigid body dynamics simulation involving deforming geometry. A wobbling torus is dropped onto a ground plane.

FrictionBalls Example for RBD Object dynamics node

This example demonstrates the friction parameter on an RBD Object.

RBDInitialState Example for RBD Object dynamics node

This example demonstrates the use of the Initial State parameter of an RBD object.

SimpleRBD Example for RBD Object dynamics node

This example demonstrates a simple rigid body dynamics simulation using the RBD Object DOP. A single sphere is dropped onto a ground plane.

ActivateObjects Example for RBD Packed Object dynamics node

This example shows how to modify the "active" point attribute of an RBD Packed Object to change objects from static to active.

AnimatedObjects Example for RBD Packed Object dynamics node

This example shows how to use animated packed primitives in an RBD Packed Object and set up a transition to active objects later in the simulation.

DeleteObjects Example for RBD Packed Object dynamics node

This example shows how to remove objects from the simulation that are inside a bounding box.

EmittingObjects Example for RBD Packed Object dynamics node

This example shows how to use a SOP Solver to create new RBD objects and add them to an existing RBD Packed Object.

Chainlinks Example for RBD Pin Constraint dynamics node

In this chain simulation, the individual chain links react to one another in an RBD sim.

Pendulum Example for RBD Pin Constraint dynamics node

This example shows how to use the RBD Pin Constraint to pin RBD Objects to world space positions or other RBD objects.

popswithrbdcollision Example for RBD Point Object dynamics node

Shows an RBD Simulation being attatched to a POP simulation to provide RBD style collisions to POPs.

GravitySlideExample Example for Slider Constraint dynamics node

This sample creates a box which can only slide and rotate on one axis, using the Slider Constraint.

DegreesOfFreedom Example for RBD Solver dynamics node

This example demonstrates the use of the Constraint Type parameter on the RBD Constraint node. This parameter controls the number of degrees of freedom the constrained object has.

PaddleWheel Example for RBD Solver dynamics node

This example combines a number of elements and features of RBD to create a simulation of a paddle wheel being hit by a large number of falling objects.

This example demonstrates features such as resolving penetrations, gluing simple objects together to create more complex objects, grouping of objects, and constraints.

Weights Example for RBD Spring Constraint dynamics node

This example shows how to use the RBD Spring Constraint to create springs that will break once a threshold force or length is exceeded.

InheritVelocity Example for RBD State dynamics node

This example demonstrates the use of the RBD State node to inherit velocity from movement and collision with other objects in a glued RBD fracture simulation.

Simple Example for RBD Visualization dynamics node

This example demonstrates a simple rigid body dynamics simulation using the RBD Object DOP. A single sphere is dropped onto a ground plane. It adds in an RBD Visualization DOP to show the impact forces that are applied as a result of the collision.

ReferenceFrameForce Example for Reference Frame Force dynamics node

An RBD vase filled with water performs the water simulation in the vase’s reference frame.

RippleGrid Example for Ripple Solver dynamics node

This example demonstrates how to use the Ripple Solver and Ripple Object nodes. Bulge SOPs are used to deform a grid to create initial geometry and rest geometry for the Ripple Object which is then piped into the Ripple Solver.

Freeze Example for Script Solver dynamics node

This example uses the Script Solver to remove objects from the simulation once they fall below a certain threshold velocity. This technique can be used to speed up simulations that are known to settle down to a static arrangement.

ScalePieces Example for Script Solver dynamics node

This example demonstrates how to use the Script Solver node to scale fractured pieces of an RBD sim over time.

SumImpacts Example for Script Solver dynamics node

This example uses the Script Solver and SOP Solver to change the color of RBD objects based on the total impact energy applied to the object at each timestep.

2dfluid Example for Smoke Object dynamics node

Demonstrates exporting a 2d fluid into COPs where it can be saved to disk as a sequence of image files to then be used as texture maps, displacement maps, etc.

DelayedSmokeHandoff Example for Smoke Object dynamics node

This example shows a way to turn an RBD into smoke a certain number of frames after the RBD object has hit something.

Open CL smoke Example for Smoke Object dynamics node

Demonstrates a simple Open CL accelerated smoke sim that can be used as a starting point for building optimized GPU accelerated smoke sims. See the Use OpenCL parameter on the Smoke solver.

For fastest speeds, the system needs to minimize copying to and from the video card. This example demonstrates several methods for minimizing copying.

  • Turns off DOPs caching. Caching requires copying all the fields every frame. Useful if you want to scrub and inspect random fields, not if you want maximum speed.

  • Only imports density to SOPs. This means copying only one field from the GPU to CPU each frame.

  • Saves to disk in background. This gives you the best throughput.

  • Uses a plain Smoke solver.

Displaying the simulated output in the viewport requires a GPU → CPU → GPU round trip, but this is required in general to support simulating on a card other than your display card.

RBDtoSmokeHandoff Example for Smoke Object dynamics node

This example shows a way to turn an RBD object into smoke. It uses multiple different colored smoke fields inside the same smoke object.

SourceVorticlesAndCollision Example for Smoke Object dynamics node

This example demonstrates a simple smoke system using a source, keyframed RBD collision objects, and vorticles.

rbdsmokesource Example for Smoke Object dynamics node

A ghostly tetrahedron bounces around a box, its presense shown by its continuous emission of smoke.

VolumePreservingSolid Example for FEM Solid Object dynamics node

This solid object has a strong volume-preserving force (e.g. flesh). The effect of the volume-preserving force is clearly visible when the object hits the ground plane.

DentingWithPops Example for SOP Solver dynamics node

This example combines a number of important DOPs concepts.

  • First, it uses both POP Solver and RBD Solver objects interacting with each other in a bidiretional manner. The RBD object affects the particles, and the particles affect the RBD object.

  • Second, the RBD object atually uses a multi-solver to combine an RBD Solver with a SOP Solver. The RBD Solver controls the motion of the overall object, while the SOP Solver performs the denting of the geometry.

  • Third, the SOP Solver extracts impact information from the RBD Solver to perform the denting. It extracts this information using DOP expression functions.

The end result is a simulation of a torus that is bombarded by a stream of particles. The particles bounce off the torus, and also cause the torus to move. In addition, each particle collision causes a slight denting of the torus.

VisualizeImpacts Example for SOP Solver dynamics node

An example that shows how you can visualize impact data in an RBD simulation by using a SOP Solver to add custom guide geometry to the RBD Objects.

This example has three toruses falling on a grid with green lines showing the position and magnitude of impacts. The force visualization is added as ancillary geometry data to the actual toruses, so the RBD Solver is entirely unaware of the effect. The SOP Solver could also be used as an independent SOP network to extract impact visualization from an RBD Object.

StaticBalls Example for Static Object dynamics node

This example uses static object nodes in an RBD simulation of a grid falling and bouncing off three spheres before it hits the ground.

FractureExamples Example for Voronoi Fracture Solver dynamics node

This example actually includes eight examples of ways that you can use voronoi fracturing in Houdini. In particular, it shows how you can use the Voronoi Fracture Solver and the Voronoi Fracture Configure Object nodes in your fracture simulations. Turn on the display flags for these examples one at a time to play the animation and dive down into each example to examine the setup.

SimpleVortex Example for Vortex Force dynamics node

This example uses a few balls to visualize the force generated by a Vortex Force DOP.

TurbulentSmoke Example for Wind Force dynamics node

This example illustrates how the Wind DOP can be used to add turbulence to a fluid simulation.

AnimatedSkin Example for Wire Glue Constraint dynamics node

This example shows how the Wire Glue Constraint DOP can constrain a wire object to animated geometry.

CompressedSpring Example for Wire Object dynamics node

This example demonstrates how an initial pose may be specified for a wire object.

BeadCurtain Example for Wire Solver dynamics node

This example uses the Wire Solver to simulate a bead curtain. A stream of RBD balls are thrown at the curtain, and through feedback the curtain and balls are mutually affected by the collisions.

BendingTree Example for Wire Solver dynamics node

This example shows how to use the Wire Solver to simulate a flexible tree built with the LSystem SOP.

CurveAdvection Example for Wire Solver dynamics node

This example demonstrates how to advect curves based on a pyro simulation. An Attribute Wrangle SOP is used to sample the velocity from the volume and apply it to a wire object.

Pendulum Example for Wire Solver dynamics node

This example shows how to mutually affect an object at the constraint point and the object at the bob of the pendulum.

CrowdPov Example for Agent Cam object node

This example demonstrates how the agent cam can be assigned to a crowd agent to give you the point of view from someone in a crowd simulation.

AgentRelationshipBasic Example for Agent Relationship geometry node

This example demonstrates how to create a simple parent-child agent setup.

PackedFragments Example for Assemble geometry node

This example shows how you can break a sphere into packed objects for use in a rigid body simulation using the Assemble SOP.

CaptureDeform Example for Cloth Deform geometry node

This example demonstrates how you can use the Cloth Capture and Cloth Deform nodes to transfer the simulation from a low-res piece of cloth to a hi-res piece of cloth.

ConnectedBalls Example for Connectivity geometry node

This example demonstrates how to use an attribute generated by the Connectivity SOP to color different pieces of geometry from a DOPs simulation.

LowHigh Example for Dop Import geometry node

This example shows how to create a low res - high res set up to support RBD objects. The two main methods are to reference copy the DOP Import SOP and feed in the high res geometry or to use point instancing with an Instance Object.

ProxyGeometry Example for Dop Import geometry node

This example demonstrates a technique of using the DOP Import SOP to allow the use of proxy geometry in a DOP simulation. One set of geometries are used in the simulation, then the transform information for those objects is applied to higher resolution versions of the geometry.

dopimportrecordsexample Example for DOP Import Records geometry node

This example demonstrates a creating points for each matching record in the DOP simulation. This lets us create a point for each object or a point for each impact.

ExtractAnimatedTransform Example for Extract Transform geometry node

This example shows how to create packed primitives with animated transforms from deforming geometry that represents rigid motion. The result is ideal for colliders in a rigid body simulation.

ColourAdvect

This example demonstrates how you can use the Fluid Source SOP to source and advect colours from an additional volume into a smoke simulation.

CoolLava

This example demonstrates how to cool Lava using the Cool Within Object shelf tool.

FurBallWorkflow Example for Fur geometry node

This example demonstrates how the Fur SOP and Mantra Fur Procedural can be applied to an animated skin geometry. CVEX shaders are used to apply a custom look to the hairs based upon attributes assigned to the geometry.

glueclusterexample Example for Glue Cluster geometry node

This example shows how to use the gluecluster SOP and glue constraint networks to cluster together the pieces of a voronoi fracture. This allows clustering to be used with Bullet without introducing concave objects.

PartitionBall Example for Partition geometry node

This example demonstrates how to break geometry in a DOPs simulation using the Partition SOP to determine the DOP Objects.

AlphaOmega Example for Points from Volume geometry node

This example demonstrates how to use a Points From Volume SOP to create a target goal for a flip simulation and make it fill a given piece of geometry.

PlateBreak Example for TimeShift geometry node

This example demonstrates how to use the TimeShift SOP to achieve a slow-motion effect during a fracture simulation.

TransformFracturedPieces Example for Transform Pieces geometry node

This example demonstrates using the Transform Pieces SOP to transform high-resolution geometry from the results a DOPs rigid-body fracture simulation that used low-resolution geometry.

Fuzzy Logic Obstacle Avoidance Example Example for Fuzzy Defuzz VOP node

This example shows agent obstacle avoidance and path following implemented using a fuzzy logic controller.

RampParameter Example for Parameter VOP node

This example shows how to control the particle colours using the temperature attributes from a pyro simulation using a Ramp Parameter VOP node.

See also

Dynamics nodes