Houdini 16.5 Nodes Dynamics nodes

Voronoi Fracture Solver dynamics node

Dynamically fractures objects based on data from the Voronoi Fracture Configure Object DOP

On this page

Overview

When you attach this solver to an object with Voronoi Fracture Parms data (usually created by a Voronoi Fracture Configure Object DOP), it will dynamically fracture the attached Geometry data based on impact data attached to the object by the RBD Solver. It uses the Voronoi Fracture Points SOP to generate fracture points from the impacts, then the Voronoi Fracture SOP to fracture the geometry.

The solver attaches the resulting fractured geometry, if any, to each solved object in its FracturedGeo data. For RBD Packed Objects, the solver will create a new packed primitive for each fractured piece and add it to the object’s geometry. For RBD Objects, the Voronoi Fracture Configure Object DOP will create new objects from this geometry on the next timestep.

This solver is implemented as a SOP Solver that processes geometry after the RBD Solver, so the simulation and fracturing will appear smoother since the Substeps parameter on the DOP network is increased. Values in the range of 2-4 usually work well.

Note

This solver creates point velocities on any fractured pieces that represent their velocity at the time of fracturing. You can ignore these fracture-time velocities by turning off the Add to Existing Velocity Attributes parameter on any DopImport nodes that import this geometry when rendering these pieces with Geometry Velocity Blur.

Parameters

Minimum Piece Volume

The minimum volume for any piece geometry created by this solver. This can avoid creating geometry that is too small for the RBD Solver to handle in a stable manner.

Fuse Tolerance

The tolerance to use when fusing clustered pieces together.

Stamp Interior Primitives With Creation Time

Creates an attribute called creationtime on all newly-created interior primitives that stores their creation time. This can be useful for effects such as emitting particles for debris for a short amount of time after the initial fracture of a primitive.

Allow Fracturing From Feedback

Usually fracturing is driven only by objects that solve before this object in the frame. If two-way coupling between different solvers is done using feedbacks, this option allows those feedback effects to also trigger fracturing.

Fracture Ignores Resting Objects

Impacts generated by objects merely resting on each other will not be considered for fracturing.

Random Seed

This value is used to initialize the pseudo-random sequence used to generate fracture points during the simulation. It is useful for generating different simulations from the same network.

Convert to Poly

The fracturing only works with polygonal geometry. This option auto-converts the geometry into polygons at the given LOD. This conversion only happens when the fracturing occurs.

Group

When an object connector is attached to the first input of this node, this parameter can be used to choose a subset of those objects to be affected by this node.

Data Name

Indicates the name that should be used to attach the data to an object or other piece of data. If the Data Name contains a "/" (or several), that indicates traversing inside subdata.

For example, if the Fan Force DOP has the default Data Name "Forces/Fan". This attaches the data with the name "Fan" to an existing piece of data named "Forces". If no data named "Forces" exists, a simple piece of container data is created to hold the "Fan" subdata.

Different pieces of data have different requirements on what names should be used for them. Except in very rare situations, the default value should be used. Some exceptions are described with particular pieces of data or with solvers that make use of some particular type of data.

Unique Data Name

Turning on this parameter modifies the Data Name parameter value to ensure that the data created by this node is attached with a unique name so it will not overwrite any existing data.

With this parameter turned off, attaching two pieces of data with the same name will cause the second one to replace the first. There are situations where each type of behavior is desirable.

If an object needs to have several Fan Forces blowing on it, it is much easier to use the Unique Data Name feature to ensure that each fan does not overwrite a previous fan rather than trying to change the Data Name of each fan individually to avoid conflicts.

On the other hand, if an object is known to have RBD State data already attached to it, leaving this option turned off will allow some new RBD State data to overwrite the existing data.

Inputs

First Input

This optional input can be used to control which simulation objects are modified by this node. Any objects connected through this input and which match the Group parameter field will be modified.

If this input is not connected, this node can be used in conjunction with an Apply Data node, or can be used as an input to another data node.

All Other Inputs

If this node has more input connectors, other data nodes can be attached to act as modifiers for the data created by this node.

The specific types of subdata that are meaningful vary from node to node. Click an input connector to see a list of available data nodes that can be meaningfully attached.

Outputs

First Output

The operation of this output depends on what inputs are connected to this node. If an object stream is input to this node, the output is also an object stream containing the same objects as the input (but with the data from this node attached).

If no object stream is connected to this node, the output is a data output. This data output can be connected to an Apply Data DOP, or connected directly to a data input of another data node, to attach the data from this node to an object or another piece of data.

Locals

channelname

This DOP node defines a local variable for each channel and parameter on the Data Options page, with the same name as the channel. So for example, the node may have channels for Position (positionx, positiony, positionz) and a parameter for an object name (objectname).

Then there will also be local variables with the names positionx, positiony, positionz, and objectname. These variables will evaluate to the previous value for that parameter.

This previous value is always stored as part of the data attached to the object being processed. This is essentially a shortcut for a dopfield expression like:

dopfield($DOPNET, $OBJID, dataName, "Options", 0, channelname)

If the data does not already exist, then a value of zero or an empty string will be returned.

DATACT

This value is the simulation time (see variable ST) at which the current data was created. This value may not be the same as the current simulation time if this node is modifying existing data, rather than creating new data.

DATACF

This value is the simulation frame (see variable SF) at which the current data was created. This value may not be the same as the current simulation frame if this node is modifying existing data, rather than creating new data.

RELNAME

This value will be set only when data is being attached to a relationship (such as when Constraint Anchor DOP is connected to the second, third, of fourth inputs of a Constraint DOP).

In this case, this value is set to the name of the relationship the data to which the data is being attached.

RELOBJIDS

This value will be set only when data is being attached to a relationship (such as when Constraint Anchor DOP is connected to the second, third, of fourth inputs of a Constraint DOP).

In this case, this value is set to a string that is a space separated list of the object identifiers for all the Affected Objects of the relationship to which the data is being attached.

RELOBJNAMES

This value will be set only when data is being attached to a relationship (such as when Constraint Anchor DOP is connected to the second, third, of fourth inputs of a Constraint DOP).

In this case, this value is set to a string that is a space separated list of the names of all the Affected Objects of the relationship to which the data is being attached.

RELAFFOBJIDS

This value will be set only when data is being attached to a relationship (such as when Constraint Anchor DOP is connected to the second, third, of fourth inputs of a Constraint DOP).

In this case, this value is set to a string that is a space separated list of the object identifiers for all the Affector Objects of the relationship to which the data is being attached.

RELAFFOBJNAMES

This value will be set only when data is being attached to a relationship (such as when Constraint Anchor DOP is connected to the second, third, of fourth inputs of a Constraint DOP).

In this case, this value is set to a string that is a space separated list of the names of all the Affector Objects of the relationship to which the data is being attached.

ST

This value is the simulation time for which the node is being evaluated.

This value may not be equal to the current Houdini time represented by the variable T, depending on the settings of the DOP Network Offset Time and Time Scale parameters.

This value is guaranteed to have a value of zero at the start of a simulation, so when testing for the first timestep of a simulation, it is best to use a test like $ST == 0 rather than $T == 0 or $FF == 1.

SF

This value is the simulation frame (or more accurately, the simulation time step number) for which the node is being evaluated.

This value may not be equal to the current Houdini frame number represented by the variable F, depending on the settings of the DOP Network parameters. Instead, this value is equal to the simulation time (ST) divided by the simulation timestep size (TIMESTEP).

TIMESTEP

This value is the size of a simulation timestep. This value is useful to scale values that are expressed in units per second, but are applied on each timestep.

SFPS

This value is the inverse of the TIMESTEP value. It is the number of timesteps per second of simulation time.

SNOBJ

This is the number of objects in the simulation. For nodes that create objects such as the Empty Object node, this value will increase for each object that is evaluated.

A good way to guarantee unique object names is to use an expression like object_$SNOBJ.

NOBJ

This value is the number of objects that will be evaluated by the current node during this timestep. This value will often be different from SNOBJ, as many nodes do not process all the objects in a simulation.

This value may return 0 if the node does not process each object sequentially (such as the Group DOP).

OBJ

This value is the index of the specific object being processed by the node. This value will always run from zero to NOBJ-1 in a given timestep. This value does not identify the current object within the simulation like OBJID or OBJNAME, just the object’s position in the current order of processing.

This value is useful for generating a random number for each object, or simply splitting the objects into two or more groups to be processed in different ways. This value will be -1 if the node does not process objects sequentially (such as the Group DOP).

OBJID

This is the unique object identifier for the object being processed. Every object is assigned an integer value that is unique among all objects in the simulation for all time. Even if an object is deleted, its identifier is never reused.

The object identifier can always be used to uniquely identify a given object. This makes this variable very useful in situations where each object needs to be treated differently. It can be used to produce a unique random number for each object, for example.

This value is also the best way to look up information on an object using the dopfield expression function. This value will be -1 if the node does not process objects sequentially (such as the Group DOP).

ALLOBJIDS

This string contains a space separated list of the unique object identifiers for every object being processed by the current node.

ALLOBJNAMES

This string contains a space separated list of the names of every object being processed by the current node.

OBJCT

This value is the simulation time (see variable ST) at which the current object was created.

Therefore, to check if an object was created on the current timestep, the expression $ST == $OBJCT should always be used. This value will be zero if the node does not process objects sequentially (such as the Group DOP).

OBJCF

This value is the simulation frame (see variable SF) at which the current object was created.

This value is equivalent to using the dopsttoframe expression on the OBJCT variable. This value will be zero if the node does not process objects sequentially (such as the Group DOP).

OBJNAME

This is a string value containing the name of the object being processed.

Object names are not guaranteed to be unique within a simulation. However, if you name your objects carefully so that they are unique, the object name can be a much easier way to identify an object than the unique object identifier, OBJID.

The object name can also be used to treat a number of similar objects (with the same name) as a virtual group. If there are 20 objects named "myobject", specifying strcmp($OBJNAME, "myobject") == 0 in the activation field of a DOP will cause that DOP to operate only on those 20 objects. This value will be the empty string if the node does not process objects sequentially (such as the Group DOP).

DOPNET

This is a string value containing the full path of the current DOP Network. This value is most useful in DOP subnet digital assets where you want to know the path to the DOP Network that contains the node.

Note

Most dynamics nodes have local variables with the same names as the node’s parameters. For example, in a Position node, you could write the expression:

$tx + 0.1

…to make the object move 0.1 units along the X axis at each timestep.

See also

Dynamics nodes