Houdini 20.0

Executing tasks with PDG/TOPs

How to define dependencies and schedule tasks using TOP networks.

TOP graphs define a workflow where data is fed into the network, turned into work items and manipulated by different nodes. Many nodes represent external processes that can be run on the local machine or a server farm.

Subtopics

Basics

Beginner Tutorials

Next steps

  • Running external programs

    How to wrap external functionality in a TOP node.

  • File tags

    Work items track the results created by their work. Each result is tagged with a type.

  • PDG Path Map

    The PDG Path Map manages the mapping of paths between file systems.

  • Feedback loops

    You can use for-each blocks to process looping, sequential chains of operations on work items.

  • Service Blocks

    Services blocks let you define a section of work items that should run using a shared Service process

  • PDG Services

    PDG services manages pools of persistent Houdini sessions that can be used to reduce work item cooking time.

  • Integrating PDG with render farm schedulers

    How to use different schedulers to schedule and execute work.

  • Visualizing work item performance

    How to visualize the relative cook times (or file output sizes) of work items in the network.

  • Event handling

    You can register a Python function to handle events from a PDG node or graph

  • Tips and tricks

    Useful general information and best practices for working with TOPs.

  • Troubleshooting PDG scheduler issues on the farm

    Useful information to help you troubleshoot scheduling PDG work items on the farm.

  • PilotPDG

    Standalone application or limited license for working with PDG-specific workflows.

Reference

  • All TOPs nodes

    TOP nodes define a workflow where data is fed into the network, turned into work items and manipulated by different nodes. Many nodes represent external processes that can be run on the local machine or a server farm.

  • Processor Node Callbacks

    Processor nodes generate work items that can be executed by a scheduler

  • Partitioner Node Callbacks

    Partitioner nodes group multiple upstream work items into single partitions.

  • Scheduler Node Callbacks

    Scheduler nodes execute work items

  • Custom File Tags and Handlers

    PDG uses file tags to determine the type of an output file.

  • Python API

    The classes and functions in the Python pdg package for working with dependency graphs.

  • Job API

    Python API used by job scripts.

  • Utility API

    The classes and functions in the Python pdgutils package are intended for use both in PDG nodes and scripts as well as out-of-process job scripts.

Houdini 20.0

Getting started

Using Houdini

  • Geometry

    How Houdini represents geometry and how to create and edit it.

  • Copying and instancing

    How to use copies (real geometry) and instances (loaded or created at render time).

  • Animation

    How to create and keyframe animation in Houdini.

  • Digital assets

    Digital assets let you create reusable nodes and tools from existing networks.

  • Import and export

    How to get scene, object, and other data in and out of Houdini.

  • Executing tasks with PDG/TOPs

    How to define dependencies and schedule tasks using TOP networks.

  • MPlay viewer

    Using Houdini’s stand-alone image viewer.

Character FX

  • Character

    How to rig and animate characters in Houdini.

  • Crowd simulations

    How to create and simulate crowds of characters in Houdini.

  • Muscles and tissue

    How to create and simulate muscles, tissue, and skin in Houdini.

  • Hair and fur

    How to create, style, and add dynamics to hair and fur.

  • Feathers

    How to create highly realistic and detailed feathers for your characters.

Dynamics

  • Dynamics

    How to use Houdini’s dynamics networks to create simulations.

  • Vellum

    Vellum uses a Position Based Dynamics approach to cloth, hair, grains, fluids, and softbody objects.

  • Pyro

    How to simulate smoke, fire, and explosions.

  • Fluids

    How to set up fluid and ocean simulations.

  • Oceans and water surfaces

    How to set up ocean and water surface simulations.

  • Destruction

    How to break different types of materials.

  • Grains

    How to simulate grainy materials (such as sand).

  • Particles

    How to create particle simulations.

  • Finite elements

    How to create and simulate deformable objects

Nodes

  • OBJ - Object nodes

    Object nodes represent objects in the scene, such as character parts, geometry objects, lights, cameras, and so on.

  • SOP - Geometry nodes

    Geometry nodes live inside Geo objects and generate geometry.

  • DOP - Dynamics nodes

    Dynamics nodes set up the conditions and rules for dynamics simulations.

  • VOP - Shader nodes

    VOP nodes let you define a program (such as a shader) by connecting nodes together. Houdini then compiles the node network into executable VEX code.

  • LOP - USD nodes

    LOP nodes generate USD describing characters, props, lighting, and rendering.

  • ROP - Render nodes

    Render nodes either render the scene or set up render dependency networks.

  • CHOP - Channel nodes

    Channel nodes create, filter, and manipulate channel data.

  • COP2 - Compositing nodes

    Composite nodes create, filter, and manipulate image data.

  • TOP - Task nodes

    TOP nodes define a workflow where data is fed into the network, turned into work items and manipulated by different nodes. Many nodes represent external processes that can be run on the local machine or a server farm.

  • APEX - APEX nodes

Lighting, rendering, and compositing

  • Solaris

    Solaris is the umbrella name for Houdini’s scene building, layout, lighting, and rendering tools based on the Universal Scene Description (USD) framework.

  • Rendering

    How to render images and animation from the 3D scene.

  • HQueue

    HQueue is Houdini’s free distributed job scheduling system.

  • Materials

    How to assign materials and create custom materials for shading.

  • Compositing

    Houdini’s compositing networks let you create and manipulate images such as renders.

Reference

  • Menus

    Explains each of the items in the main menus.

  • Viewers

    Viewer pane types.

  • Panes

    Documents the options in various panes.

  • Windows

    Documents the options in various user interface windows.

  • Stand-alone utilities

    Houdini includes a large number of useful command-line utility programs.

  • APIs

    Lists all the reference documentation for the ways you can program Houdini.

  • Python scripting

    How to script Houdini using Python and the Houdini Object Model.

  • Expression functions

    Expression functions let you compute the value of parameters.

  • HScript commands

    HScript is Houdini’s legacy scripting language.

  • VEX

    VEX is a high-performance expression language used in many places in Houdini, such as writing shaders.

  • Properties

    Properties let you set up flexible and powerful hierarchies of rendering, shading, lighting, and camera parameters.

  • Galleries

    Pre-made materials included with Houdini.

  • Houdini packages

    How to write and combine multiple environment variable definition files for different plug-ins, tools, and add-ons.

  • Houdini Engine

    Documents the Houdini Engine C, Python APIs, and Houdini Engine plugins

  • hwebserver

    Functions and classes for running a web server inside a graphical or non-graphical Houdini session.