HDK
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
refPtr.h
Go to the documentation of this file.
1 //
2 // Copyright 2016 Pixar
3 //
4 // Licensed under the Apache License, Version 2.0 (the "Apache License")
5 // with the following modification; you may not use this file except in
6 // compliance with the Apache License and the following modification to it:
7 // Section 6. Trademarks. is deleted and replaced with:
8 //
9 // 6. Trademarks. This License does not grant permission to use the trade
10 // names, trademarks, service marks, or product names of the Licensor
11 // and its affiliates, except as required to comply with Section 4(c) of
12 // the License and to reproduce the content of the NOTICE file.
13 //
14 // You may obtain a copy of the Apache License at
15 //
16 // http://www.apache.org/licenses/LICENSE-2.0
17 //
18 // Unless required by applicable law or agreed to in writing, software
19 // distributed under the Apache License with the above modification is
20 // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
21 // KIND, either express or implied. See the Apache License for the specific
22 // language governing permissions and limitations under the Apache License.
23 //
24 #ifndef PXR_BASE_TF_REF_PTR_H
25 #define PXR_BASE_TF_REF_PTR_H
26 
27 /// \file tf/refPtr.h
28 /// \ingroup group_tf_Memory
29 /// Reference counting.
30 ///
31 /// \anchor refPtr_QuickStart
32 /// <B> Quick Start </B>
33 ///
34 /// Here is how to make a class \c Bunny usable through \c TfRefPtr.
35 ///
36 /// \code
37 /// #include "pxr/base/tf/refPtr.h"
38 /// typedef TfRefPtr<Bunny> BunnyRefPtr;
39 ///
40 /// class Bunny : public TfRefBase {
41 /// public:
42 /// static BunnyRefPtr New() {
43 /// // warning: return new Bunny directly will leak memory!
44 /// return TfCreateRefPtr(new Bunny);
45 /// }
46 /// static BunnyRefPtr New(bool isRabid) {
47 /// return TfCreateRefPtr(new Bunny(isRabid));
48 /// }
49 ///
50 /// ~Bunny();
51 ///
52 /// bool IsHungry();
53 /// private:
54 /// Bunny();
55 /// Bunny(bool);
56 /// };
57 ///
58 /// BunnyRefPtr nice = Bunny::New();
59 /// BunnyRefPtr mean = Bunny::New(true); // this one is rabid
60 ///
61 /// BunnyRefPtr mean2 = mean; // two references to mean rabbit
62 /// mean.Reset(); // one reference to mean rabbit
63 ///
64 /// if (mean2->IsHungry())
65 /// nice.Reset(); // nice bunny gone now...
66 ///
67 /// // this function comes from
68 /// // TfRefBase; meaning is that
69 /// if (mean2->IsUnique()) // mean2 is the last pointer to
70 /// mean2.Reset(); // this bunny...
71 /// \endcode
72 ///
73 /// Pretty much any pointer operation that is legal with regular pointers
74 /// is legal with the \c BunnyRefPtr; continue reading for a more detailed
75 /// description.
76 ///
77 /// Note that by virtue of deriving from \c TfRefBase, the reference
78 /// count can be queried: see \c TfRefBase for details.
79 ///
80 /// \anchor refPtr_DetailedDiscussion
81 /// <B> Detailed Discussion: Overview </B>
82 ///
83 /// Objects created by the \c new operator can easily be a source of
84 /// both memory leaks and dangling pointers. One solution is
85 /// \e reference counting; when an object is created by \c new,
86 /// the number of pointers given the object's address is continually
87 /// tracked in a \e reference \e counter. Then, \c delete is called on
88 /// the object \e only when the object's reference count drops to zero,
89 /// meaning there are no more pointers left pointing to the object.
90 /// Reference counting avoids both dangling pointers and memory leaks.
91 ///
92 /// Access by regular pointers does not perform reference counting, but
93 /// the \c TfRefPtr<T> class implements reference-counted pointer access
94 /// to objects of type \c T, with minimal overhead. The reference counting
95 /// is made thread-safe by use of atomic integers.
96 ///
97 ///
98 /// <B> Basic Use </B>
99 ///
100 /// The use of a \c TfRefPtr is simple. Whenever a \c TfRefPtr is
101 /// made to point at an object, either by initialization or assignment,
102 /// the object being pointed at has its reference count incremented.
103 /// When a \c TfRefPtr with a non-NULL address is reassigned, or
104 /// goes out of scope, the object being pointed to has its reference
105 /// count decremented.
106 ///
107 /// A \c TfRefPtr<T> can access \c T's public members by the
108 /// \c -> operator and can be dereferenced by the "\c *" operator.
109 /// Here is a simple example:
110 /// \code
111 /// #include "pxr/base/tf/refPtr.h"
112 ///
113 /// typedef TfRefPtr<Simple> SimpleRefPtr;
114 ///
115 /// class Simple : public TfRefBase {
116 /// public:
117 /// void Method1();
118 /// int Method2();
119 ///
120 /// static SimpleRefPtr New() {
121 /// return TfCreateRefPtr(new Simple);
122 /// }
123 /// private:
124 /// Simple();
125 /// };
126 ///
127 ///
128 /// SimpleRefPtr p1; // p1 points to NULL
129 /// SimpleRefPtr p2 = Simple::New(); // p2 points to new object A
130 /// SimpleRefPtr p3 = Simple::New(); // p3 points to new object B
131 ///
132 /// p1->Method1(); // runtime error -- p1 is NULL
133 /// p3 = p2; // object B is deleted
134 /// p2->Method1(); // Method1 on object A
135 /// int value = p3->Method2(); // Method2 on object A
136 ///
137 /// p2.Reset(); // only p3 still points at A
138 /// p3 = p1; // object A is deleted
139 ///
140 /// if (...) {
141 /// SimpleRefPtr p4 = Simple::New(); // p4 points to object C
142 /// p4->Method1();
143 /// } // object C destroyed
144 /// \endcode
145 ///
146 /// Note that \c Simple's constructor is private; this ensures that one
147 /// can only get at a \c Simple through \c Simple::New(), which is careful
148 /// to return a \c SimpleRefPtr.
149 ///
150 /// Note that it is often useful to have both const and non-const
151 /// versions of \c TfRefPtr for the same data type. Our convention
152 /// is to use a \c typedef for each of these, with the const version
153 /// beginning with "Const", after any prefix. The const version can be
154 /// used as a parameter to a function in which you want to prevent
155 /// changes to the pointed-to object. For example:
156 /// \code
157 /// typedef TfRefPtr<XySimple> XySimpleRefPtr;
158 /// typedef TfRefPtr<const XySimple> XyConstSimpleRefPtr;
159 ///
160 /// void
161 /// Func1(const XySimpleRefPtr &p)
162 /// {
163 /// p->Modify(); // OK even if Modify() is not a const member
164 /// }
165 ///
166 /// void
167 /// Func2(const XyConstSimpleRefPtr &p)
168 /// {
169 /// p->Query(); // OK only if Query() is a const member
170 /// }
171 /// \endcode
172 ///
173 /// It is always possible to assign a non-const pointer to a const
174 /// pointer variable. In extremely rare cases where you want to do the
175 /// opposite, you can use the \c TfConst_cast function, as in:
176 /// \code
177 /// XyConstSimpleRefPtr p1;
178 /// XySimpleRefPtr p2;
179 ///
180 /// p1 = p2; // OK
181 /// p2 = p1; // Illegal!
182 /// p2 = TfConst_cast<XySimpleRefPtr>(p1); // OK, but discouraged
183 /// \endcode
184 ///
185 /// <B> Comparisons and Tests </B>
186 ///
187 /// Reference-counted pointers of like type can be compared; any \c TfRefPtr
188 /// can be tested to see it is NULL or not:
189 ///
190 /// \code
191 /// TfRefPtr<Elf> elf = Elf::New();
192 /// TfRefPtr<Dwarf> sleepy,
193 /// sneezy = Dwarf::New();
194 ///
195 /// if (!sleepy)
196 /// ... // true: sleepy is NULL
197 ///
198 /// if (sneezy)
199 /// ... // true: sneezy is non-nULL
200 ///
201 /// bool b1 = (sleepy != sneezy),
202 /// b2 = (sleepy == sneezy),
203 /// b3 = (elf == sneezy); // compilation error -- type clash
204 ///
205 /// \endcode
206 ///
207 /// <B> Opaqueness </B>
208 ///
209 /// A \c TfRefPtr can be used as an opaque pointer, just as a regular
210 /// pointer can. For example, without having included the header file
211 /// for a class \c XySimple, the following will still compile:
212 /// \code
213 /// #include "pxr/base/tf/refPtr.h"
214 ///
215 /// class XySimple;
216 ///
217 /// class Complicated {
218 /// public:
219 /// void SetSimple(const TfRefPtr<XySimple>& s) {
220 /// _simplePtr = s;
221 /// }
222 ///
223 /// TfRefPtr<XySimple> GetSimple() {
224 /// return _simplePtr;
225 /// }
226 ///
227 /// void Forget() {
228 /// _simplePtr.Reset();
229 /// }
230 ///
231 /// private:
232 /// TfRefPtr<XySimple> _simplePtr;
233 /// };
234 /// \endcode
235 ///
236 /// Note that the call \c Forget() (or \c SetSimple() for that matter)
237 /// may implicitly cause destruction of an \c XySimple object, if the count
238 /// of the object pointed to by \c _simplePtr drops to zero. Even though
239 /// the definition of \c XySimple is unknown, this compiles and works correctly.
240 ///
241 /// The only time that the definition of \c XySimple is required is when
242 /// putting a raw \c XySimple* into a \c TfRefPtr<XySimple>; note however, that
243 /// this should in fact only be done within the class definition of
244 /// \c XySimple itself.
245 ///
246 /// Other cases that require a definition of \c XySimple are parallel to
247 /// regular raw pointers, such as calling a member function, static or
248 /// dynamic casts (but not const casts) and using the \c TfTypeid
249 /// function. Transferring a \c TfWeakPtr to a \c TfRefPtr also
250 /// requires knowing the definition of \c XySimple.
251 ///
252 /// Sometimes a class may have many typedefs associated with it, having
253 /// to do with \c TfRefPtr or \c TfWeakPtr. If it is useful to use
254 /// the class opaquely, we recommend creating a separate file
255 /// as follows:
256 ///
257 /// \code
258 /// // file: proj/xy/simplePtrDefs.h
259 /// #include "pxr/base/tf/refPtr.h"
260 /// #include "pxr/base/tf/weakPtr.h"
261 ///
262 /// typedef TfRefPtr<class XySimple> XySimpleRefPtr;
263 /// typedef TfRefPtr<const class XySimple> XyConstSimpleRefPtr;
264 ///
265 /// // typedefs for TfWeakPtr<XySimple> would follow,
266 /// // if XySimple derives from TfWeakBase
267 /// \endcode
268 ///
269 /// The definition for \c XySimple would then use the typedefs:
270 ///
271 /// \code
272 /// #include "Proj/Xy/SimpleRefPtrDefs.h"
273 ///
274 /// class XySimple : public TfRefBase {
275 /// public:
276 /// static XySimpleRefPtr New();
277 /// ...
278 /// };
279 ///
280 /// \endcode
281 ///
282 /// The above pattern now allows a consumer of class \c XySimple the option
283 /// to include only \c simplePtrDefs.h, if using the type opaquely suffices,
284 /// or to include \c simple.h, if the class definition is required.
285 ///
286 ///
287 /// <B> Cyclic Dependencies </B>
288 ///
289 /// If you build a tree using \c TfRefPtr, and you only have pointers
290 /// from parent to child, everything is fine: if you "lose" the root of the
291 /// tree, the tree will correctly destroy itself.
292 ///
293 /// But what if children point back to parents? Then a simple parent/child
294 /// pair is stable, because the parent and child point at each other, and
295 /// even if nobody else has a pointer to the parent, the reference count
296 /// of the two nodes remains at one.
297 ///
298 /// The solution to this is to make one of the links (typically from child back
299 /// to parent) use a \c TfWeakPtr. If a class \c T is enabled for both
300 /// "guarding" (see \c TfWeakBase) and reference counting, then a \c TfRefPtr
301 /// can be converted to a \c TfWeakPtr (in this context, a "back pointer")
302 /// and vice versa.
303 ///
304 /// <B> Inheritance </B>
305 ///
306 ///
307 /// Reference-counted pointers obey the same rules with respect to inheritance
308 /// as regular pointers. In particular, if class \c Derived is derived
309 /// from class \c Base, then the following are legal:
310 ///
311 /// \code
312 /// TfRefPtr<Base> bPtr = new Base;
313 /// TfRefPtr<Derived> dPtr = new Derived;
314 ///
315 /// TfRefPtr<Base> b2Ptr = dPtr; // initialization
316 /// b2Ptr = dPtr; // assignment
317 /// b2Ptr == dPtr; // comparison
318 ///
319 /// dPtr = bPtr; // Not legal: compilation error
320 /// \endcode
321 ///
322 /// As the last example shows, initialization or assignment to
323 /// a \c TfRefPtr<Derived> from a \c TfRefPtr<Base> is illegal,
324 /// just as it is illegal to assign a \c Base* to a \c Derived*.
325 /// However, if \c Derived and \c Base are polymorphic
326 /// (i.e. have virtual functions) then the analogue of a \c dynamic_cast<>
327 /// is possible:
328 ///
329 /// \code
330 /// dPtr = TfDynamic_cast<TfRefPtr<Derived> >(bPtr);
331 /// \endcode
332 ///
333 /// Just like a regular \c dynamic_cast<> operation, the \c TfRefPtr
334 /// returned by \c TfDynamic_cast<> points to NULL if the conversion fails,
335 /// so that the operator can also be used to check types:
336 ///
337 /// \code
338 /// if (! TfDynamic_cast<TfRefPtr<T2> >(ptr))
339 /// // complain: ptr is not of type T2
340 /// \endcode
341 ///
342 /// Similarly, one can use the \c TfStatic_cast<> operator to statically
343 /// convert \c TfRefPtrs:
344 ///
345 /// \code
346 /// dPtr = TfStatic_cast<TfRefPtr<Derived> >(bPtr);
347 /// \endcode
348 ///
349 /// This is faster, but not as safe as using \c TfDynamic_cast.
350 ///
351 /// Finally, remember that in \c C++, a \c Derived** is
352 /// not a \c Base**, nor is a \c Derived*& a \c Base*&. This implies
353 /// that
354 ///
355 /// \code
356 /// TfRefPtr<Base>* bPtrPtr = &dPtr; // compilation error
357 /// TfRefPtr<Base>& bPtrRef = dPtr; // compilation error
358 /// const TfRefPtr<Base>&bPtrRef = dPtr; // OK
359 /// \endcode
360 ///
361 /// The last initialization is legal because the compiler implicitly
362 /// converts dPtr into a temporary variable of type \c TfRefPtr<Base>.
363 ///
364 ///
365 /// <B> Thread Safety </B>
366 ///
367 /// One more comment about thread-safety: the above examples are thread-safe
368 /// in the sense that if two or more threads create and destroy their \e own
369 /// \c TfRefPtr objects, the reference counts of the underlying objects are
370 /// always correct; said another way, the reference count it a thread-safe
371 /// quantity.
372 ///
373 /// However, it is never safe for two threads to simultaneously try to alter
374 /// the same \c TfRefPtr object, nor can two threads safely call methods on the
375 /// same underlying object unless that object itself guarantees thread safety.
376 ///
377 /// \anchor refPtr_Tracking
378 /// <B> Tracking References </B>
379 ///
380 /// The \c TfRefPtrTracker singleton can track \c TfRefPtr objects that
381 /// point to particular instances. The macros \c TF_DECLARE_REFBASE_TRACK
382 /// and \c TF_DEFINE_REFBASE_TRACK are used to enable tracking. Tracking
383 /// is enabled at compile time but which instances to track is chosen at
384 /// runtime.
385 ///
386 /// <B> Total Encapsulation </B>
387 /// \anchor refPtr_encapsulation
388 ///
389 /// If you're using \c TfRefPtrs on a type \c T, you probably want
390 /// to completely forbid clients from creating their own objects of
391 /// type \c T, and force them to go through \c TfRefPtrs. Such
392 /// encapsulation is strongly encouraged. Here is the recommended
393 /// technique:
394 ///
395 /// \code
396 ///
397 /// typedef TfRefPtr<class Simple> SimpleRefPtr;
398 ///
399 /// class Simple : public TfRefBase {
400 /// private: // use protected if you plan to derive later
401 /// Simple();
402 /// Simple(<arg-list>);
403 /// public:
404 /// static SimpleRefPtr New() {
405 /// return TfCreateRefPtr(new Simple);
406 /// }
407 ///
408 /// static SimpleRefPtr New(<arg-list>) {
409 /// return TfCreateRefPtr(new Simple(<arg-list>));
410 /// }
411 ///
412 /// ~Simple();
413 /// };
414 /// \endcode
415 ///
416 /// Clients can now only create objects of type \c Simple using a
417 /// \c TfRefPtr:
418 ///
419 /// \code
420 /// Simple s; // compilation error
421 /// SimpleRefPtr sPtr1 = new Simple; // compilation error
422 /// SimpleRefPtr sPtr2 = Simple::New(); // OK
423 /// SimpleRefPtr sPtr3 = Simple::New(<arg-list>); // Ok
424 /// \endcode
425 ///
426 
427 #include "pxr/pxr.h"
428 
430 #include "pxr/base/tf/nullPtr.h"
431 #include "pxr/base/tf/refBase.h"
434 #include "pxr/base/tf/api.h"
435 
436 #include "pxr/base/arch/hints.h"
437 
438 #include <hboost/functional/hash_fwd.hpp>
439 #include <hboost/mpl/if.hpp>
440 #include <hboost/type_traits/is_base_of.hpp>
441 #include <hboost/type_traits/is_convertible.hpp>
442 #include <hboost/type_traits/is_same.hpp>
443 #include <hboost/utility/enable_if.hpp>
444 
445 #include <typeinfo>
446 #include <type_traits>
447 #include <cstddef>
448 
450 
451 // Tf_SupportsUniqueChanged is a metafunction that may be specialized to return
452 // false for classes (and all derived classes) that *cannot* ever invoke unique
453 // changed listeners.
454 template <class T>
456  static const bool Value = true;
457 };
458 
459 // Remnants are never able to support weak changed listeners.
460 class Tf_Remnant;
461 template <>
463  static const bool Value = false;
464 };
465 
466 class TfWeakBase;
467 
468 template <class T> class TfWeakPtr;
469 template <template <class> class X, class Y>
471 
472 // Functions used for tracking. Do not implement these.
473 inline void Tf_RefPtrTracker_FirstRef(const void*, const void*) { }
474 inline void Tf_RefPtrTracker_LastRef(const void*, const void*) { }
475 inline void Tf_RefPtrTracker_New(const void*, const void*) { }
476 inline void Tf_RefPtrTracker_Delete(const void*, const void*) { }
477 inline void Tf_RefPtrTracker_Assign(const void*, const void*, const void*) { }
478 
479 // This code is used to increment and decrement ref counts in the common case.
480 // It may lock and invoke the unique changed listener, if the reference count
481 // becomes unique or non-unique.
483  static inline int
484  AddRef(TfRefBase const *refBase)
485  {
486  if (refBase) {
487  // Check to see if we need to invoke the unique changed listener.
488  if (refBase->_shouldInvokeUniqueChangedListener)
489  return _AddRef(refBase);
490  else
491  return refBase->GetRefCount()._FetchAndAdd(1);
492  }
493  return 0;
494  }
495 
496  static inline bool
497  RemoveRef(TfRefBase const* refBase) {
498  if (refBase) {
499  // Check to see if we need to invoke the unique changed listener.
500  return refBase->_shouldInvokeUniqueChangedListener ?
501  _RemoveRef(refBase) :
502  refBase->GetRefCount()._DecrementAndTestIfZero();
503  }
504  return false;
505  }
506 
507  // Increment ptr's count if it is not zero. Return true if done so
508  // successfully, false if its count is zero.
509  static inline bool
511  if (!ptr)
512  return false;
513  if (ptr->_shouldInvokeUniqueChangedListener) {
514  return _AddRefIfNonzero(ptr);
515  } else {
516  auto &counter = ptr->GetRefCount()._counter;
517  auto val = counter.load();
518  do {
519  if (val == 0)
520  return false;
521  } while (!counter.compare_exchange_weak(val, val + 1));
522  return true;
523  }
524  }
525 
526  TF_API static bool _RemoveRef(TfRefBase const *refBase);
527 
528  TF_API static int _AddRef(TfRefBase const *refBase);
529 
530  TF_API static bool _AddRefIfNonzero(TfRefBase const *refBase);
531 };
532 
533 // This code is used to increment and decrement ref counts in the case where
534 // the object pointed to explicitly does not support unique changed listeners.
536  static inline int
537  AddRef(TfRefBase const *refBase) {
538  if (refBase)
539  return refBase->GetRefCount()._FetchAndAdd(1);
540  return 0;
541  }
542 
543  static inline bool
545  return (ptr && (ptr->GetRefCount()._DecrementAndTestIfZero()));
546  }
547 
548  // Increment ptr's count if it is not zero. Return true if done so
549  // successfully, false if its count is zero.
550  static inline bool
552  if (!ptr)
553  return false;
554  auto &counter = ptr->GetRefCount()._counter;
555  auto val = counter.load();
556  do {
557  if (val == 0)
558  return false;
559  } while (!counter.compare_exchange_weak(val, val + 1));
560  return true;
561  }
562 };
563 
564 // Helper to post a fatal error when a NULL Tf pointer is dereferenced.
565 [[noreturn]]
566 TF_API void
568 
569 /// \class TfRefPtr
570 /// \ingroup group_tf_Memory
571 ///
572 /// Reference-counted smart pointer utility class
573 ///
574 /// The \c TfRefPtr class implements a reference counting on objects
575 /// that inherit from \c TfRefBase.
576 ///
577 /// For more information, see either the \ref refPtr_QuickStart "Quick Start"
578 /// example or read the \ref refPtr_DetailedDiscussion "detailed discussion".
579 ///
580 template <class T>
581 class TfRefPtr {
582  // Select the counter based on whether T supports unique changed listeners.
583  typedef typename hboost::mpl::if_c<
587  Tf_RefPtr_Counter>::type _Counter;
588 
589 public:
590  /// Convenience type accessor to underlying type \c T for template code.
591  typedef T DataType;
592 
593 
594  template <class U> struct Rebind {
595  typedef TfRefPtr<U> Type;
596  };
597 
598  /// Initialize pointer to nullptr.
599  ///
600  /// The default constructor leaves the pointer initialized to point to the
601  /// NULL object. Attempts to use the \c -> operator will cause an abort
602  /// until the pointer is given a value.
603  TfRefPtr() : _refBase(nullptr) {
604  Tf_RefPtrTracker_New(this, _GetObjectForTracking());
605  }
606 
607  /// Moves the pointer managed by \p p to \c *this.
608  ///
609  /// After construction, \c *this will point to the object \p p had
610  /// been pointing at and \p p will be pointing at the NULL object.
611  /// The reference count of the object being pointed at does not
612  /// change.
613  TfRefPtr(TfRefPtr<T>&& p) : _refBase(p._refBase) {
614  p._refBase = nullptr;
615  Tf_RefPtrTracker_New(this, _GetObjectForTracking());
616  Tf_RefPtrTracker_Assign(&p, p._GetObjectForTracking(),
617  _GetObjectForTracking());
618  }
619 
620  /// Initializes \c *this to point at \p p's object.
621  ///
622  /// Increments \p p's object's reference count.
623  TfRefPtr(const TfRefPtr<T>& p) : _refBase(p._refBase) {
624  _AddRef();
625  Tf_RefPtrTracker_New(this, _GetObjectForTracking());
626  }
627 
628  /// Initializes \c *this to point at \p gp's object.
629  ///
630  /// Increments \p gp's object's reference count.
631  template <template <class> class X, class U>
632  inline TfRefPtr(const TfWeakPtrFacade<X, U>& p,
633  typename hboost::enable_if<
634  hboost::is_convertible<U*, T*>
635  >::type *dummy = 0);
636 
637  /// Transfer a raw pointer to a reference-counted pointer.
638  ///
639  /// The \c TfCreateRefPtr() function should only be used from within a
640  /// static \c New() function (or similarly, a \c Clone() function) of a
641  /// reference-counted class. Reference-counted objects have their
642  /// reference count initially set to one to account for the fact that a
643  /// newly created object must always persist at least until its \c New()
644  /// function returns. Therefore, the transfer of the pointer returned by
645  /// \c new into a reference pointer must \e not increase the reference
646  /// count. The transfer of the raw pointer returned by \c new into the
647  /// object returned by \c New() is a "transfer of ownership" and does not
648  /// represent an additional reference to the object.
649  ///
650  /// In summary, this code is wrong, and will return an object that can
651  /// never be destroyed:
652  ///
653  /// \code
654  /// SimpleRefPtr Simple::New() {
655  /// return SimpleRefPtr(new Simple); // legal, but leaks memory: beware!!
656  /// }
657  /// \endcode
658  ///
659  /// The correct form is
660  ///
661  /// \code
662  /// SimpleRefPtr Simple::New() {
663  /// return TfCreateRefPtr(new Simple);
664  /// }
665  /// \endcode
666  ///
667  /// Note also that a function which is essentially like \c New(),
668  /// for example \c Clone(), would also want to use \c TfCreateRefPtr().
669 #if defined(doxygen)
670  friend inline TfRefPtr TfCreateRefPtr(T*);
671 #else
672  template <class U>
673  friend inline TfRefPtr<U> TfCreateRefPtr(U*);
674 #endif
675 
676  /// Initializes to point at \c *ptr.
677  ///
678  /// Increments \c *ptr's reference count. Note that newly constructed
679  /// objects start with a reference count of one. Therefore, you should \e
680  /// NOT use this constructor (either implicitly or explicitly) from within
681  /// a \c New() function. Use \c TfCreateRefPtr() instead.
682  template <class U>
683  explicit TfRefPtr(
684  U* ptr, typename std::enable_if<
686  _refBase(ptr)
687  {
688  _AddRef();
689  Tf_RefPtrTracker_New(this, _GetObjectForTracking());
690  }
691 
692  /// Implicit conversion from \a TfNullPtr to TfRefPtr.
693  TfRefPtr(TfNullPtrType) : _refBase(nullptr)
694  {
695  Tf_RefPtrTracker_New(this, _GetObjectForTracking());
696  }
697 
698  /// Implicit conversion from \a nullptr to TfRefPtr.
699  TfRefPtr(std::nullptr_t) : _refBase(nullptr)
700  {
701  Tf_RefPtrTracker_New(this, _GetObjectForTracking());
702  }
703 
704  /// Assigns pointer to point at \c p's object, and increments reference
705  /// count.
706  ///
707  /// The object (if any) pointed at before the assignment has its
708  /// reference count decremented, while the object newly pointed at
709  /// has its reference count incremented.
710  /// If the object previously pointed to now has nobody left to point at it,
711  /// the object will typically be destroyed at this point.
712  ///
713  /// An assignment
714  /// \code
715  /// ptr = TfNullPtr;
716  /// \endcode
717  ///
718  /// can be used to make \c ptr "forget" where it is pointing; note
719  /// however that this has an important side effect, since it
720  /// decrements the reference count of the object previously pointed
721  /// to by \c ptr, possibly triggering destruction of that object.
723  //
724  // It is quite possible for
725  // ptr = TfNullPtr;
726  // to delete the space that ptr actually lives in (this happens
727  // when you use a circular reference to keep an object alive).
728  // To avoid a crash, we have to ensure that deletion of the object
729  // is the last thing done in the assignment; so we use some
730  // local variables to help us out.
731  //
732 
733  Tf_RefPtrTracker_Assign(this, p._GetObjectForTracking(),
734  _GetObjectForTracking());
735 
736  const TfRefBase* tmp = _refBase;
737  _refBase = p._refBase;
738 
739  p._AddRef(); // first!
740  _RemoveRef(tmp); // second!
741  return *this;
742  }
743 
744  /// Moves the pointer managed by \p p to \c *this and leaves \p p
745  /// pointing at the NULL object.
746  ///
747  /// The object (if any) pointed at before the assignment has its
748  /// reference count decremented, while the reference count of the
749  /// object newly pointed at is not changed.
751  // See comment in assignment operator.
752  Tf_RefPtrTracker_Assign(this, p._GetObjectForTracking(),
753  _GetObjectForTracking());
754  Tf_RefPtrTracker_Assign(&p, nullptr,
755  p._GetObjectForTracking());
756 
757  const TfRefBase* tmp = _refBase;
758  _refBase = p._refBase;
759  p._refBase = nullptr;
760 
761  _RemoveRef(tmp);
762  return *this;
763  }
764 
765  /// Decrements reference count of object being pointed to.
766  ///
767  /// If the reference count of the object (if any) that was just pointed at
768  /// reaches zero, the object will typically be destroyed at this point.
770  Tf_RefPtrTracker_Delete(this, _GetObjectForTracking());
771  _RemoveRef(_refBase);
772  }
773 
774 private:
775 
776  // Compile error if a U* cannot be assigned to a T*.
777  template <class U>
778  static void _CheckTypeAssignability() {
779  T* unused = (U*)0;
780  if (unused) unused = 0;
781  }
782 
783  // Compile error if a T* and U* cannot be compared.
784  template <class U>
785  static void _CheckTypeComparability() {
786  bool unused = ((T*)0 == (U*)0);
787  if (unused) unused = false;
788  }
789 
790 public:
791 
792  /// Initializes to point at \c p's object, and increments reference count.
793  ///
794  /// This initialization is legal only if
795  /// \code
796  /// U* uPtr;
797  /// T* tPtr = uPtr;
798  /// \endcode
799  /// is legal.
800 #if !defined(doxygen)
801  template <class U>
802 #endif
803  TfRefPtr(const TfRefPtr<U>& p) : _refBase(p._refBase) {
805  if (false)
806  _CheckTypeAssignability<U>();
807  }
808 
809  _AddRef();
810  Tf_RefPtrTracker_New(this, _GetObjectForTracking());
811  }
812 
813  /// Moves the pointer managed by \p p to \c *this and leaves \p p
814  /// pointing at the NULL object. The reference count of the object
815  /// being pointed to is not changed.
816  ///
817  /// This initialization is legal only if
818  /// \code
819  /// U* uPtr;
820  /// T* tPtr = uPtr;
821  /// \endcode
822  /// is legal.
823 #if !defined(doxygen)
824  template <class U>
825 #endif
826  TfRefPtr(TfRefPtr<U>&& p) : _refBase(p._refBase) {
828  if (false)
829  _CheckTypeAssignability<U>();
830  }
831 
832  p._refBase = nullptr;
833  Tf_RefPtrTracker_New(this, _GetObjectForTracking());
834  Tf_RefPtrTracker_Assign(&p, p._GetObjectForTracking(),
835  _GetObjectForTracking());
836  }
837 
838  /// Assigns pointer to point at \c p's object, and increments reference
839  /// count.
840  ///
841  /// This assignment is legal only if
842  /// \code
843  /// U* uPtr;
844  /// T* tPtr;
845  /// tPtr = uPtr;
846  /// \endcode
847  /// is legal.
848 #if !defined(doxygen)
849  template <class U>
850 #endif
853  if (false)
854  _CheckTypeAssignability<U>();
855  }
856 
858  reinterpret_cast<T*>(p._GetObjectForTracking()),
859  _GetObjectForTracking());
860  const TfRefBase* tmp = _refBase;
861  _refBase = p._GetData();
862  p._AddRef(); // first!
863  _RemoveRef(tmp); // second!
864  return *this;
865  }
866 
867  /// Moves the pointer managed by \p p to \c *this and leaves \p p
868  /// pointing at the NULL object. The reference count of the object
869  /// being pointed to is not changed.
870  ///
871  /// This assignment is legal only if
872  /// \code
873  /// U* uPtr;
874  /// T* tPtr;
875  /// tPtr = uPtr;
876  /// \endcode
877  /// is legal.
878 #if !defined(doxygen)
879  template <class U>
880 #endif
883  if (false)
884  _CheckTypeAssignability<U>();
885  }
886 
888  reinterpret_cast<T*>(p._GetObjectForTracking()),
889  _GetObjectForTracking());
891  nullptr,
892  reinterpret_cast<T*>(p._GetObjectForTracking()));
893  const TfRefBase* tmp = _refBase;
894  _refBase = p._GetData();
895  p._refBase = nullptr;
896  _RemoveRef(tmp);
897  return *this;
898  }
899 
900  /// Returns true if \c *this and \c p point to the same object (or if they
901  /// both point to NULL).
902  ///
903  /// The comparison is legal only if a \c T* and a \c U* are comparable.
904 #if !defined(doxygen)
905  template <class U>
906 #endif
907  bool operator== (const TfRefPtr<U>& p) const {
908  if (false)
909  _CheckTypeComparability<U>();
910 
911  return _refBase == p._refBase;
912  }
913 
914  /// Returns true if the address of the object pointed to by \c *this
915  /// compares less than the address of the object pointed to by \p p.
916  ///
917  /// The comparison is legal only if a \c T* and a \c U* are comparable.
918 #if !defined(doxygen)
919  template <class U>
920 #endif
921  bool operator< (const TfRefPtr<U>& p) const {
922  if (false)
923  _CheckTypeComparability<U>();
924 
925  return _refBase < p._refBase;
926  }
927 
928 #if !defined(doxygen)
929  template <class U>
930 #endif
931  bool operator> (const TfRefPtr<U>& p) const {
932  if (false)
933  _CheckTypeComparability<U>();
934 
935  return _refBase > p._refBase;
936  }
937 
938 #if !defined(doxygen)
939  template <class U>
940 #endif
941  bool operator<= (const TfRefPtr<U>& p) const {
942  if (false)
943  _CheckTypeComparability<U>();
944 
945  return _refBase <= p._refBase;
946  }
947 
948 #if !defined(doxygen)
949  template <class U>
950 #endif
951  bool operator>= (const TfRefPtr<U>& p) const {
952  if (false)
953  _CheckTypeComparability<U>();
954 
955  return _refBase >= p._refBase;
956  }
957 
958  /// Returns true if \c *this and \c p do not point to the same object.
959  ///
960  /// The comparison is legal only if a \c T* and a \c U* are comparable.
961 #if !defined(doxygen)
962  template <class U>
963 #endif
964  bool operator!= (const TfRefPtr<U>& p) const {
965  if (false)
966  _CheckTypeComparability<U>();
967 
968  return _refBase != p._refBase;
969  }
970 
971  /// Accessor to \c T's public members.
972  T* operator ->() const {
973  if (_refBase) {
974  return static_cast<T*>(const_cast<TfRefBase*>(_refBase));
975  }
977  TF_CALL_CONTEXT, typeid(TfRefPtr).name());
978  }
979 
980  /// Dereferences the stored pointer.
981  T& operator *() const {
982  return *operator->();
983  }
984 
985 #if !defined(doxygen)
986  using UnspecifiedBoolType = const TfRefBase * (TfRefPtr::*);
987 #endif
988 
989  /// True if the pointer points to an object.
990  operator UnspecifiedBoolType() const {
991  return _refBase ? &TfRefPtr::_refBase : nullptr;
992  }
993 
994  /// True if the pointer points to \c NULL.
995  bool operator !() const {
996  return _refBase == nullptr;
997  }
998 
999  /// Swap this pointer with \a other.
1000  /// After this operation, this pointer will point to what \a other
1001  /// formerly pointed to, and \a other will point to what this pointer
1002  /// formerly pointed to.
1003  void swap(TfRefPtr &other) {
1004  Tf_RefPtrTracker_Assign(this, other._GetObjectForTracking(),
1005  _GetObjectForTracking());
1006  Tf_RefPtrTracker_Assign(&other, _GetObjectForTracking(),
1007  other._GetObjectForTracking());
1008  std::swap(_refBase, other._refBase);
1009  }
1010 
1011  /// Set this pointer to point to no object.
1012  /// Equivalent to assignment with TfNullPtr.
1013  void Reset() {
1014  *this = TfNullPtr;
1015  }
1016 
1017 private:
1018  const TfRefBase* _refBase;
1019 
1020  template <class HashState, class U>
1021  friend inline void TfHashAppend(HashState &, const TfRefPtr<U>&);
1022  template <class U>
1023  friend inline size_t hash_value(const TfRefPtr<U>&);
1024 
1025  friend T *get_pointer(TfRefPtr const &p) {
1026  return static_cast<T *>(const_cast<TfRefBase *>(p._refBase));
1027  }
1028 
1029  // Used to distinguish construction in TfCreateRefPtr.
1030  class _CreateRefPtr { };
1031 
1032  // private constructor, used by TfCreateRefPtr()
1033  TfRefPtr(T* ptr, _CreateRefPtr /* unused */)
1034  : _refBase(ptr)
1035  {
1036  /* reference count is NOT bumped */
1037  Tf_RefPtrTracker_FirstRef(this, _GetObjectForTracking());
1038  Tf_RefPtrTracker_New(this, _GetObjectForTracking());
1039  }
1040 
1041  // Hide confusing internals of actual C++ definition (e.g. DataType)
1042  // for doxygen output:
1043 
1044  /// Allows dynamic casting of a \c TfRefPtr.
1045  ///
1046  /// If it is legal to dynamically cast a \c T* to a \c D* , then
1047  /// the following is also legal:
1048  /// \code
1049  /// TfRefPtr<T> tPtr = ... ;
1050  /// TfRefPtr<D> dPtr;
1051  ///
1052  /// if (!(dPtr = TfDynamic_cast< TfRefPtr<D> >(tPtr)))
1053  /// ...; // cast failed
1054  /// \endcode
1055  /// The runtime performance of this function is exactly the same
1056  /// as a \c dynamic_cast (i.e. one virtual function call). If the pointer
1057  /// being cast is NULL or does not point to an object of the requisite
1058  /// type, the result is a \c TfRefPtr pointing to NULL.
1059 #if defined(doxygen)
1060  // Sanitized for documentation:
1061  template <class D>
1062  friend inline TfRef<D> TfDynamic_cast(const TfRefPtr<T>&);
1063 #else
1064  template <class D, class B>
1066  TfDynamic_cast(const TfRefPtr<B>&);
1067 
1068  template <class D, class B>
1071 #endif
1072 
1073  /// Allows static casting of a \c TfRefPtr.
1074  ///
1075  /// If it is legal to statically cast a \c T* to a \c D* , then
1076  /// the following is also legal:
1077  /// \code
1078  /// TfRefPtr<T> tPtr = ... ;
1079  /// TfRefPtr<D> dPtr;
1080  ///
1081  /// dPtr = TfStatic_cast< TfRefPtr<D> >(tPtr);
1082  /// \endcode
1083  /// The runtime performance of this function is exactly the same
1084  /// as a regular \c TfRefPtr initialization, since the cost of
1085  /// the underlying \c static_cast is zero. Of course, a \c TfDynamic_cast
1086  /// is preferred, assuming the underlying types are polymorphic
1087  /// (i.e. have virtual functions).
1088  ///
1089 #if defined(doxygen)
1090  // Sanitized for documentation:
1091  template <class D>
1092  friend inline TfRefPtr<D> TfStatic_cast(const TfRefPtr<T>&);
1093 #else
1094  template <class D, class B>
1096  TfStatic_cast(const TfRefPtr<B>&);
1097 
1098 #endif
1099 
1100  /// Allows const casting of a \c TfRefPtr.
1101  ///
1102  /// The following is always legal:
1103  /// \code
1104  /// TfRefPtr<const T> cPtr = ...;
1105  /// TfRefPtr<T> tPtr;
1106  ///
1107  /// tPtr = TfConst_cast< TfRefPtr<T> >(cPtr);
1108  /// \endcode
1109  /// As with the C++ \c const_cast operator, use of this function is
1110  /// discouraged.
1111 #if defined(doxygen)
1112  // Sanitized for documentation:
1113  template <class D>
1114  friend inline TfRefPtr<D> TfConst_cast(const TfRefPtr<const D>&);
1115 #else
1116  template <class D>
1119 #endif
1120 
1121  T* _GetData() const {
1122  return static_cast<T*>(const_cast<TfRefBase*>(_refBase));
1123  }
1124 
1125  // This method is only used when calling the hook functions for
1126  // tracking. We reinterpret_cast instead of static_cast so that
1127  // we don't need the definition of T. However, if TfRefBase is
1128  // not the first base class of T then the resulting pointer may
1129  // not point to a T. Nevertheless, it should be consistent to
1130  // all calls to the tracking functions.
1131  T* _GetObjectForTracking() const {
1132  return reinterpret_cast<T*>(const_cast<TfRefBase*>(_refBase));
1133  }
1134 
1135  /// Call \c typeid on the object pointed to by a \c TfRefPtr.
1136  ///
1137  /// If \c ptr is a \c TfRefPtr, \c typeid(ptr) will return
1138  /// type information about the \c TfRefPtr. To access type
1139  /// information about the object pointed to by a \c TfRefPtr,
1140  /// one can use \c TfTypeid.
1141 
1142  template <class U>
1143  friend const std::type_info& TfTypeid(const TfRefPtr<U>& ptr);
1144 
1145  void _AddRef() const {
1146  _Counter::AddRef(_refBase);
1147  }
1148 
1149  void _RemoveRef(const TfRefBase* ptr) const {
1150  if (_Counter::RemoveRef(ptr)) {
1152  reinterpret_cast<T*>(const_cast<TfRefBase*>(ptr)));
1153  delete ptr;
1154  }
1155  }
1156 
1157 #if ! defined(doxygen)
1158  // doxygen is very confused by this. It declares all TfRefPtrs
1159  // to be friends.
1160  template <class U> friend class TfRefPtr;
1161  template <class U> friend class TfWeakPtr;
1162  friend class Tf_Remnant;
1163 
1164  template <class U>
1166 #endif
1167  friend class TfWeakBase;
1168 };
1169 
1170 #if !defined(doxygen)
1171 
1172 //
1173 // nullptr comparisons
1174 //
1175 // These are provided to avoid ambiguous overloads due to
1176 // TfWeakPtrFacade::Derived comparisons with TfRefPtr.
1177 //
1178 
1179 template <class T>
1180 inline bool operator== (const TfRefPtr<T> &p, std::nullptr_t)
1181 {
1182  return !p;
1183 }
1184 template <class T>
1185 inline bool operator== (std::nullptr_t, const TfRefPtr<T> &p)
1186 {
1187  return !p;
1188 }
1189 
1190 template <class T>
1191 inline bool operator!= (const TfRefPtr<T> &p, std::nullptr_t)
1192 {
1193  return !(p == nullptr);
1194 }
1195 template <class T>
1196 inline bool operator!= (std::nullptr_t, const TfRefPtr<T> &p)
1197 {
1198  return !(nullptr == p);
1199 }
1200 
1201 template <class T>
1202 inline bool operator< (const TfRefPtr<T> &p, std::nullptr_t)
1203 {
1204  return std::less<const TfRefBase *>()(get_pointer(p), nullptr);
1205 }
1206 template <class T>
1207 inline bool operator< (std::nullptr_t, const TfRefPtr<T> &p)
1208 {
1209  return std::less<const TfRefBase *>()(nullptr, get_pointer(p));
1210 }
1211 
1212 template <class T>
1213 inline bool operator<= (const TfRefPtr<T> &p, std::nullptr_t)
1214 {
1215  return !(nullptr < p);
1216 }
1217 template <class T>
1218 inline bool operator<= (std::nullptr_t, const TfRefPtr<T> &p)
1219 {
1220  return !(p < nullptr);
1221 }
1222 
1223 template <class T>
1224 inline bool operator> (const TfRefPtr<T> &p, std::nullptr_t)
1225 {
1226  return nullptr < p;
1227 }
1228 template <class T>
1229 inline bool operator> (std::nullptr_t, const TfRefPtr<T> &p)
1230 {
1231  return p < nullptr;
1232 }
1233 
1234 template <class T>
1235 inline bool operator>= (const TfRefPtr<T> &p, std::nullptr_t)
1236 {
1237  return !(p < nullptr);
1238 }
1239 template <class T>
1240 inline bool operator>= (std::nullptr_t, const TfRefPtr<T> &p)
1241 {
1242  return !(nullptr < p);
1243 }
1244 
1245 
1246 template <typename T>
1248  return TfRefPtr<T>(ptr, typename TfRefPtr<T>::_CreateRefPtr());
1249 }
1250 
1251 template <class T>
1252 const std::type_info&
1254 {
1255  if (ARCH_UNLIKELY(!ptr._refBase))
1256  TF_FATAL_ERROR("called TfTypeid on NULL TfRefPtr");
1257 
1258  return typeid(*ptr._GetData());
1259 }
1260 
1261 template <class D, class T>
1262 inline
1265 {
1266  typedef TfRefPtr<typename D::DataType> RefPtr;
1267  return RefPtr(dynamic_cast<typename D::DataType*>(ptr._GetData()));
1268 }
1269 
1270 template <class D, class T>
1271 inline
1274 {
1275  typedef TfRefPtr<typename D::DataType> RefPtr;
1276  return RefPtr(TfSafeDynamic_cast<typename D::DataType*>(ptr._GetData()));
1277 }
1278 
1279 template <class D, class T>
1280 inline
1283 {
1284  typedef TfRefPtr<typename D::DataType> RefPtr;
1285  return RefPtr(static_cast<typename D::DataType*>(ptr._GetData()));
1286 }
1287 
1288 template <class T>
1289 inline
1292 {
1293  // this ugly cast allows TfConst_cast to work without requiring
1294  // a definition for T.
1295  typedef TfRefPtr<typename T::DataType> NonConstRefPtr;
1296  return *((NonConstRefPtr*)(&ptr));
1297 }
1298 
1299 // Specialization: prevent construction of a TfRefPtr<TfRefBase>.
1300 
1301 template <>
1303 private:
1305  }
1306 };
1307 
1308 template <>
1310 private:
1312  }
1313 };
1314 
1315 template <class T>
1317  static T* GetRawPtr(const TfRefPtr<T>& t) {
1318  return t.operator-> ();
1319  }
1320 
1322  return TfRefPtr<T>(ptr);
1323  }
1324 
1325  static bool IsNull(const TfRefPtr<T>& t) {
1326  return !t;
1327  }
1328 
1331 };
1332 
1333 template <class T>
1335  static const T* GetRawPtr(const TfRefPtr<const T>& t) {
1336  return t.operator-> ();
1337  }
1338 
1340  return TfRefPtr<const T>(ptr);
1341  }
1342 
1343  static bool IsNull(const TfRefPtr<const T>& t) {
1344  return !t;
1345  }
1346 
1348 };
1349 
1350 #endif
1351 
1352 #if !defined(doxygen)
1353 
1354 template <class T>
1355 inline void
1357 {
1358  lhs.swap(rhs);
1359 }
1360 
1362 
1363 namespace hboost {
1364 
1365 template<typename T>
1366 T *
1367 get_pointer(PXR_NS::TfRefPtr<T> const& p)
1368 {
1369  return get_pointer(p);
1370 }
1371 
1372 } // end namespace hboost
1373 
1375 
1376 // Extend hboost::hash to support TfRefPtr.
1377 template <class T>
1378 inline size_t
1380 {
1381  // Make the hboost::hash type depend on T so that we don't have to always
1382  // include hboost/functional/hash.hpp in this header for the definition of
1383  // hboost::hash.
1384  auto refBase = ptr._refBase;
1385  return hboost::hash<decltype(refBase)>()(refBase);
1386 }
1387 
1388 template <class HashState, class T>
1389 inline void
1390 TfHashAppend(HashState &h, const TfRefPtr<T> &ptr)
1391 {
1392  h.Append(get_pointer(ptr));
1393 }
1394 
1395 #endif // !doxygen
1396 
1397 #define TF_SUPPORTS_REFPTR(T) hboost::is_base_of<TfRefBase, T >::value
1398 
1399 #if defined(ARCH_COMPILER_MSVC)
1400 // There is a bug in the compiler which means we have to provide this
1401 // implementation. See here for more information:
1402 // https://connect.microsoft.com/VisualStudio/Feedback/Details/2852624
1403 
1404 #define TF_REFPTR_CONST_VOLATILE_GET(x) \
1405  namespace hboost \
1406  { \
1407  template<> \
1408  const volatile x* \
1409  get_pointer(const volatile x* p) \
1410  { \
1411  return p; \
1412  } \
1413  }
1414 #else
1415 #define TF_REFPTR_CONST_VOLATILE_GET(x)
1416 #endif
1417 
1419 
1420 #endif // PXR_BASE_TF_REF_PTR_H
void swap(ArAssetInfo &lhs, ArAssetInfo &rhs)
Definition: assetInfo.h:61
static void Class_Object_MUST_Be_Passed_By_Address()
Definition: refPtr.h:1329
TfRefPtr< T > TfCreateRefPtr(T *ptr)
Definition: refPtr.h:1247
#define TF_CALL_CONTEXT
Definition: callContext.h:47
PXR_NAMESPACE_OPEN_SCOPE size_t hash_value(const TfRefPtr< T > &ptr)
Definition: refPtr.h:1379
GLuint counter
Definition: glew.h:2745
TfRefPtr< typename T::DataType > TfConst_cast(const TfRefPtr< const typename T::DataType > &ptr)
Definition: refPtr.h:1291
static TfRefPtr< const T > ConstructFromRawPtr(T *ptr)
Definition: refPtr.h:1339
#define TF_API
Definition: api.h:40
friend size_t hash_value(const TfRefPtr< U > &)
TfRefPtr(TfNullPtrType)
Implicit conversion from TfNullPtr to TfRefPtr.
Definition: refPtr.h:693
const TfRefCount & GetRefCount() const
Definition: refBase.h:93
Y
Definition: ImathEuler.h:184
void swap(UT::ArraySet< Key, MULTI, MAX_LOAD_FACTOR_256, Clearer, Hash, KeyEqual > &a, UT::ArraySet< Key, MULTI, MAX_LOAD_FACTOR_256, Clearer, Hash, KeyEqual > &b)
Definition: UT_ArraySet.h:1629
bool operator>(const TfRefPtr< U > &p) const
Definition: refPtr.h:931
static bool RemoveRef(TfRefBase const *ptr)
Definition: refPtr.h:544
const TfRefBase *(TfRefPtr::*) UnspecifiedBoolType
Definition: refPtr.h:986
static bool IsNull(const TfRefPtr< T > &t)
Definition: refPtr.h:1325
TF_API const TfNullPtrType TfNullPtr
X
Definition: ImathEuler.h:183
static void Class_Object_MUST_Be_Passed_By_Address()
Definition: refPtr.h:1347
void Tf_RefPtrTracker_LastRef(const void *, const void *)
Definition: refPtr.h:474
friend T * get_pointer(TfRefPtr const &p)
Definition: refPtr.h:1025
friend TfRefPtr< U > TfCreateRefPtr(U *)
bool operator>=(const TfRefPtr< U > &p) const
Definition: refPtr.h:951
GLdouble GLdouble t
Definition: glew.h:1403
TfRefPtr< T > & operator=(const TfRefPtr< T > &p)
Definition: refPtr.h:722
Y * get_pointer(TfWeakPtrFacade< X, Y > const &p)
Definition: weakPtrFacade.h:86
bool operator!() const
True if the pointer points to NULL.
Definition: refPtr.h:995
friend TfRefPtr< typename D::DataType > TfSafeDynamic_cast(const TfRefPtr< B > &)
void Tf_RefPtrTracker_Delete(const void *, const void *)
Definition: refPtr.h:476
TfRefPtr(U *ptr, typename std::enable_if< std::is_convertible< U *, T * >::value >::type *=nullptr)
Definition: refPtr.h:683
T & operator*() const
Dereferences the stored pointer.
Definition: refPtr.h:981
static bool RemoveRef(TfRefBase const *refBase)
Definition: refPtr.h:497
TfRefPtr< typename D::DataType > TfDynamic_cast(const TfRefPtr< T > &ptr)
Definition: refPtr.h:1264
#define ARCH_UNLIKELY(x)
Definition: hints.h:47
bool operator!=(const TfRefPtr< U > &p) const
Definition: refPtr.h:964
TF_API void Tf_PostNullSmartPtrDereferenceFatalError(const TfCallContext &, const char *)
TfRefPtr(const TfRefPtr< T > &p)
Definition: refPtr.h:623
static TF_API bool _AddRefIfNonzero(TfRefBase const *refBase)
T * get_pointer(PXR_NS::TfRefPtr< T > const &p)
Definition: refPtr.h:1367
static const T * GetRawPtr(const TfRefPtr< const T > &t)
Definition: refPtr.h:1335
TfRefPtr(TfRefPtr< U > &&p)
Definition: refPtr.h:826
A generic, discriminated value, whose type may be queried dynamically.
Definition: Value.h:44
TfRefPtr< T > & operator=(TfRefPtr< U > &&p)
Definition: refPtr.h:881
#define TF_FATAL_ERROR
static T * GetRawPtr(const TfRefPtr< T > &t)
Definition: refPtr.h:1317
bool operator!=(const Mat3< T0 > &m0, const Mat3< T1 > &m1)
Inequality operator, does exact floating point comparisons.
Definition: Mat3.h:570
const std::type_info & TfTypeid(const TfRefPtr< T > &ptr)
Definition: refPtr.h:1253
friend const std::type_info & TfTypeid(const TfRefPtr< U > &ptr)
static bool AddRefIfNonzero(TfRefBase const *ptr)
Definition: refPtr.h:551
GLfloat GLfloat p
Definition: glew.h:16656
TfRefPtr< typename D::DataType > TfSafeDynamic_cast(const TfRefPtr< T > &ptr)
Definition: refPtr.h:1273
TfRefPtr< typename D::DataType > TfStatic_cast(const TfRefPtr< T > &ptr)
Definition: refPtr.h:1282
TfRefPtr(TfRefPtr< T > &&p)
Definition: refPtr.h:613
void Tf_RefPtrTracker_New(const void *, const void *)
Definition: refPtr.h:475
static int AddRef(TfRefBase const *refBase)
Definition: refPtr.h:537
static TF_API int _AddRef(TfRefBase const *refBase)
friend TfRefPtr< typename D::DataType > TfDynamic_cast(const TfRefPtr< B > &)
bool operator>(const TfRefPtr< T > &p, std::nullptr_t)
Definition: refPtr.h:1224
GLuint GLfloat * val
Definition: glcorearb.h:1608
GLfloat GLfloat GLfloat GLfloat h
Definition: glcorearb.h:2002
TfRefPtr(std::nullptr_t)
Implicit conversion from nullptr to TfRefPtr.
Definition: refPtr.h:699
PXR_NAMESPACE_CLOSE_SCOPE PXR_NAMESPACE_OPEN_SCOPE
Definition: path.h:1394
TfRefPtr< T > & operator=(TfRefPtr< T > &&p)
Definition: refPtr.h:750
static bool AddRefIfNonzero(TfRefBase const *ptr)
Definition: refPtr.h:510
static bool IsNull(const TfRefPtr< const T > &t)
Definition: refPtr.h:1343
static TF_API bool _RemoveRef(TfRefBase const *refBase)
TfRefPtr()
Definition: refPtr.h:603
void Tf_RefPtrTracker_FirstRef(const void *, const void *)
Definition: refPtr.h:473
auto ptr(T p) -> const void *
Definition: format.h:2448
#define PXR_NAMESPACE_CLOSE_SCOPE
Definition: pxr.h:91
GLsizei const GLfloat * value
Definition: glcorearb.h:824
static TfRefPtr< T > ConstructFromRawPtr(T *ptr)
Definition: refPtr.h:1321
friend void TfHashAppend(HashState &, const TfRefPtr< U > &)
void TfHashAppend(HashState &h, const TfRefPtr< T > &ptr)
Definition: refPtr.h:1390
~TfRefPtr()
Definition: refPtr.h:769
T DataType
Convenience type accessor to underlying type T for template code.
Definition: refPtr.h:591
friend TfRefPtr< typename D::DataType > TfStatic_cast(const TfRefPtr< B > &)
bool operator>=(const TfRefPtr< T > &p, std::nullptr_t)
Definition: refPtr.h:1235
#define const
Definition: zconf.h:214
TfRefPtr(const TfRefPtr< U > &p)
Definition: refPtr.h:803
type
Definition: core.h:1059
friend TfRefPtr< U > TfCreateRefPtrFromProtectedWeakPtr(TfWeakPtr< U > const &)
void Tf_RefPtrTracker_Assign(const void *, const void *, const void *)
Definition: refPtr.h:477
TfRefPtr< T > & operator=(const TfRefPtr< U > &p)
Definition: refPtr.h:851
static void Class_Object_MUST_Not_Be_Const()
Definition: refPtr.h:1330
T * operator->() const
Accessor to T's public members.
Definition: refPtr.h:972
static int AddRef(TfRefBase const *refBase)
Definition: refPtr.h:484
bool operator==(const TfRefPtr< U > &p) const
Definition: refPtr.h:907
friend TfRefPtr< typename D::DataType > TfConst_cast(const TfRefPtr< const typename D::DataType > &)
bool operator==(const Mat3< T0 > &m0, const Mat3< T1 > &m1)
Equality operator, does exact floating point comparisons.
Definition: Mat3.h:556
void Reset()
Definition: refPtr.h:1013
void swap(TfRefPtr &other)
Definition: refPtr.h:1003
TfRefPtr< U > Type
Definition: refPtr.h:595