HDK
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
refPtr.h
Go to the documentation of this file.
1 //
2 // Copyright 2016 Pixar
3 //
4 // Licensed under the Apache License, Version 2.0 (the "Apache License")
5 // with the following modification; you may not use this file except in
6 // compliance with the Apache License and the following modification to it:
7 // Section 6. Trademarks. is deleted and replaced with:
8 //
9 // 6. Trademarks. This License does not grant permission to use the trade
10 // names, trademarks, service marks, or product names of the Licensor
11 // and its affiliates, except as required to comply with Section 4(c) of
12 // the License and to reproduce the content of the NOTICE file.
13 //
14 // You may obtain a copy of the Apache License at
15 //
16 // http://www.apache.org/licenses/LICENSE-2.0
17 //
18 // Unless required by applicable law or agreed to in writing, software
19 // distributed under the Apache License with the above modification is
20 // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
21 // KIND, either express or implied. See the Apache License for the specific
22 // language governing permissions and limitations under the Apache License.
23 //
24 #ifndef PXR_BASE_TF_REF_PTR_H
25 #define PXR_BASE_TF_REF_PTR_H
26 
27 /// \file tf/refPtr.h
28 /// \ingroup group_tf_Memory
29 /// Reference counting.
30 ///
31 /// \anchor refPtr_QuickStart
32 /// <B> Quick Start </B>
33 ///
34 /// Here is how to make a class \c Bunny usable through \c TfRefPtr.
35 ///
36 /// \code
37 /// #include "pxr/base/tf/refPtr.h"
38 /// typedef TfRefPtr<Bunny> BunnyRefPtr;
39 ///
40 /// class Bunny : public TfRefBase {
41 /// public:
42 /// static BunnyRefPtr New() {
43 /// // warning: return new Bunny directly will leak memory!
44 /// return TfCreateRefPtr(new Bunny);
45 /// }
46 /// static BunnyRefPtr New(bool isRabid) {
47 /// return TfCreateRefPtr(new Bunny(isRabid));
48 /// }
49 ///
50 /// ~Bunny();
51 ///
52 /// bool IsHungry();
53 /// private:
54 /// Bunny();
55 /// Bunny(bool);
56 /// };
57 ///
58 /// BunnyRefPtr nice = Bunny::New();
59 /// BunnyRefPtr mean = Bunny::New(true); // this one is rabid
60 ///
61 /// BunnyRefPtr mean2 = mean; // two references to mean rabbit
62 /// mean.Reset(); // one reference to mean rabbit
63 ///
64 /// if (mean2->IsHungry())
65 /// nice.Reset(); // nice bunny gone now...
66 ///
67 /// // this function comes from
68 /// // TfRefBase; meaning is that
69 /// if (mean2->IsUnique()) // mean2 is the last pointer to
70 /// mean2.Reset(); // this bunny...
71 /// \endcode
72 ///
73 /// Pretty much any pointer operation that is legal with regular pointers
74 /// is legal with the \c BunnyRefPtr; continue reading for a more detailed
75 /// description.
76 ///
77 /// Note that by virtue of deriving from \c TfRefBase, the reference
78 /// count can be queried: see \c TfRefBase for details.
79 ///
80 /// \anchor refPtr_DetailedDiscussion
81 /// <B> Detailed Discussion: Overview </B>
82 ///
83 /// Objects created by the \c new operator can easily be a source of
84 /// both memory leaks and dangling pointers. One solution is
85 /// \e reference counting; when an object is created by \c new,
86 /// the number of pointers given the object's address is continually
87 /// tracked in a \e reference \e counter. Then, \c delete is called on
88 /// the object \e only when the object's reference count drops to zero,
89 /// meaning there are no more pointers left pointing to the object.
90 /// Reference counting avoids both dangling pointers and memory leaks.
91 ///
92 /// Access by regular pointers does not perform reference counting, but
93 /// the \c TfRefPtr<T> class implements reference-counted pointer access
94 /// to objects of type \c T, with minimal overhead. The reference counting
95 /// is made thread-safe by use of atomic integers.
96 ///
97 ///
98 /// <B> Basic Use </B>
99 ///
100 /// The use of a \c TfRefPtr is simple. Whenever a \c TfRefPtr is
101 /// made to point at an object, either by initialization or assignment,
102 /// the object being pointed at has its reference count incremented.
103 /// When a \c TfRefPtr with a non-NULL address is reassigned, or
104 /// goes out of scope, the object being pointed to has its reference
105 /// count decremented.
106 ///
107 /// A \c TfRefPtr<T> can access \c T's public members by the
108 /// \c -> operator and can be dereferenced by the "\c *" operator.
109 /// Here is a simple example:
110 /// \code
111 /// #include "pxr/base/tf/refPtr.h"
112 ///
113 /// typedef TfRefPtr<Simple> SimpleRefPtr;
114 ///
115 /// class Simple : public TfRefBase {
116 /// public:
117 /// void Method1();
118 /// int Method2();
119 ///
120 /// static SimpleRefPtr New() {
121 /// return TfCreateRefPtr(new Simple);
122 /// }
123 /// private:
124 /// Simple();
125 /// };
126 ///
127 ///
128 /// SimpleRefPtr p1; // p1 points to NULL
129 /// SimpleRefPtr p2 = Simple::New(); // p2 points to new object A
130 /// SimpleRefPtr p3 = Simple::New(); // p3 points to new object B
131 ///
132 /// p1->Method1(); // runtime error -- p1 is NULL
133 /// p3 = p2; // object B is deleted
134 /// p2->Method1(); // Method1 on object A
135 /// int value = p3->Method2(); // Method2 on object A
136 ///
137 /// p2.Reset(); // only p3 still points at A
138 /// p3 = p1; // object A is deleted
139 ///
140 /// if (...) {
141 /// SimpleRefPtr p4 = Simple::New(); // p4 points to object C
142 /// p4->Method1();
143 /// } // object C destroyed
144 /// \endcode
145 ///
146 /// Note that \c Simple's constructor is private; this ensures that one
147 /// can only get at a \c Simple through \c Simple::New(), which is careful
148 /// to return a \c SimpleRefPtr.
149 ///
150 /// Note that it is often useful to have both const and non-const
151 /// versions of \c TfRefPtr for the same data type. Our convention
152 /// is to use a \c typedef for each of these, with the const version
153 /// beginning with "Const", after any prefix. The const version can be
154 /// used as a parameter to a function in which you want to prevent
155 /// changes to the pointed-to object. For example:
156 /// \code
157 /// typedef TfRefPtr<XySimple> XySimpleRefPtr;
158 /// typedef TfRefPtr<const XySimple> XyConstSimpleRefPtr;
159 ///
160 /// void
161 /// Func1(const XySimpleRefPtr &p)
162 /// {
163 /// p->Modify(); // OK even if Modify() is not a const member
164 /// }
165 ///
166 /// void
167 /// Func2(const XyConstSimpleRefPtr &p)
168 /// {
169 /// p->Query(); // OK only if Query() is a const member
170 /// }
171 /// \endcode
172 ///
173 /// It is always possible to assign a non-const pointer to a const
174 /// pointer variable. In extremely rare cases where you want to do the
175 /// opposite, you can use the \c TfConst_cast function, as in:
176 /// \code
177 /// XyConstSimpleRefPtr p1;
178 /// XySimpleRefPtr p2;
179 ///
180 /// p1 = p2; // OK
181 /// p2 = p1; // Illegal!
182 /// p2 = TfConst_cast<XySimpleRefPtr>(p1); // OK, but discouraged
183 /// \endcode
184 ///
185 /// <B> Comparisons and Tests </B>
186 ///
187 /// Reference-counted pointers of like type can be compared; any \c TfRefPtr
188 /// can be tested to see it is NULL or not:
189 ///
190 /// \code
191 /// TfRefPtr<Elf> elf = Elf::New();
192 /// TfRefPtr<Dwarf> sleepy,
193 /// sneezy = Dwarf::New();
194 ///
195 /// if (!sleepy)
196 /// ... // true: sleepy is NULL
197 ///
198 /// if (sneezy)
199 /// ... // true: sneezy is non-nULL
200 ///
201 /// bool b1 = (sleepy != sneezy),
202 /// b2 = (sleepy == sneezy),
203 /// b3 = (elf == sneezy); // compilation error -- type clash
204 ///
205 /// \endcode
206 ///
207 /// <B> Opaqueness </B>
208 ///
209 /// A \c TfRefPtr can be used as an opaque pointer, just as a regular
210 /// pointer can. For example, without having included the header file
211 /// for a class \c XySimple, the following will still compile:
212 /// \code
213 /// #include "pxr/base/tf/refPtr.h"
214 ///
215 /// class XySimple;
216 ///
217 /// class Complicated {
218 /// public:
219 /// void SetSimple(const TfRefPtr<XySimple>& s) {
220 /// _simplePtr = s;
221 /// }
222 ///
223 /// TfRefPtr<XySimple> GetSimple() {
224 /// return _simplePtr;
225 /// }
226 ///
227 /// void Forget() {
228 /// _simplePtr.Reset();
229 /// }
230 ///
231 /// private:
232 /// TfRefPtr<XySimple> _simplePtr;
233 /// };
234 /// \endcode
235 ///
236 /// Note that the call \c Forget() (or \c SetSimple() for that matter)
237 /// may implicitly cause destruction of an \c XySimple object, if the count
238 /// of the object pointed to by \c _simplePtr drops to zero. Even though
239 /// the definition of \c XySimple is unknown, this compiles and works correctly.
240 ///
241 /// The only time that the definition of \c XySimple is required is when
242 /// putting a raw \c XySimple* into a \c TfRefPtr<XySimple>; note however, that
243 /// this should in fact only be done within the class definition of
244 /// \c XySimple itself.
245 ///
246 /// Other cases that require a definition of \c XySimple are parallel to
247 /// regular raw pointers, such as calling a member function, static or
248 /// dynamic casts (but not const casts) and using the \c TfTypeid
249 /// function. Transferring a \c TfWeakPtr to a \c TfRefPtr also
250 /// requires knowing the definition of \c XySimple.
251 ///
252 /// Sometimes a class may have many typedefs associated with it, having
253 /// to do with \c TfRefPtr or \c TfWeakPtr. If it is useful to use
254 /// the class opaquely, we recommend creating a separate file
255 /// as follows:
256 ///
257 /// \code
258 /// // file: proj/xy/simplePtrDefs.h
259 /// #include "pxr/base/tf/refPtr.h"
260 /// #include "pxr/base/tf/weakPtr.h"
261 ///
262 /// typedef TfRefPtr<class XySimple> XySimpleRefPtr;
263 /// typedef TfRefPtr<const class XySimple> XyConstSimpleRefPtr;
264 ///
265 /// // typedefs for TfWeakPtr<XySimple> would follow,
266 /// // if XySimple derives from TfWeakBase
267 /// \endcode
268 ///
269 /// The definition for \c XySimple would then use the typedefs:
270 ///
271 /// \code
272 /// #include "Proj/Xy/SimpleRefPtrDefs.h"
273 ///
274 /// class XySimple : public TfRefBase {
275 /// public:
276 /// static XySimpleRefPtr New();
277 /// ...
278 /// };
279 ///
280 /// \endcode
281 ///
282 /// The above pattern now allows a consumer of class \c XySimple the option
283 /// to include only \c simplePtrDefs.h, if using the type opaquely suffices,
284 /// or to include \c simple.h, if the class definition is required.
285 ///
286 ///
287 /// <B> Cyclic Dependencies </B>
288 ///
289 /// If you build a tree using \c TfRefPtr, and you only have pointers
290 /// from parent to child, everything is fine: if you "lose" the root of the
291 /// tree, the tree will correctly destroy itself.
292 ///
293 /// But what if children point back to parents? Then a simple parent/child
294 /// pair is stable, because the parent and child point at each other, and
295 /// even if nobody else has a pointer to the parent, the reference count
296 /// of the two nodes remains at one.
297 ///
298 /// The solution to this is to make one of the links (typically from child back
299 /// to parent) use a \c TfWeakPtr. If a class \c T is enabled for both
300 /// "guarding" (see \c TfWeakBase) and reference counting, then a \c TfRefPtr
301 /// can be converted to a \c TfWeakPtr (in this context, a "back pointer")
302 /// and vice versa.
303 ///
304 /// <B> Inheritance </B>
305 ///
306 ///
307 /// Reference-counted pointers obey the same rules with respect to inheritance
308 /// as regular pointers. In particular, if class \c Derived is derived
309 /// from class \c Base, then the following are legal:
310 ///
311 /// \code
312 /// TfRefPtr<Base> bPtr = new Base;
313 /// TfRefPtr<Derived> dPtr = new Derived;
314 ///
315 /// TfRefPtr<Base> b2Ptr = dPtr; // initialization
316 /// b2Ptr = dPtr; // assignment
317 /// b2Ptr == dPtr; // comparison
318 ///
319 /// dPtr = bPtr; // Not legal: compilation error
320 /// \endcode
321 ///
322 /// As the last example shows, initialization or assignment to
323 /// a \c TfRefPtr<Derived> from a \c TfRefPtr<Base> is illegal,
324 /// just as it is illegal to assign a \c Base* to a \c Derived*.
325 /// However, if \c Derived and \c Base are polymorphic
326 /// (i.e. have virtual functions) then the analogue of a \c dynamic_cast<>
327 /// is possible:
328 ///
329 /// \code
330 /// dPtr = TfDynamic_cast<TfRefPtr<Derived> >(bPtr);
331 /// \endcode
332 ///
333 /// Just like a regular \c dynamic_cast<> operation, the \c TfRefPtr
334 /// returned by \c TfDynamic_cast<> points to NULL if the conversion fails,
335 /// so that the operator can also be used to check types:
336 ///
337 /// \code
338 /// if (! TfDynamic_cast<TfRefPtr<T2> >(ptr))
339 /// // complain: ptr is not of type T2
340 /// \endcode
341 ///
342 /// Similarly, one can use the \c TfStatic_cast<> operator to statically
343 /// convert \c TfRefPtrs:
344 ///
345 /// \code
346 /// dPtr = TfStatic_cast<TfRefPtr<Derived> >(bPtr);
347 /// \endcode
348 ///
349 /// This is faster, but not as safe as using \c TfDynamic_cast.
350 ///
351 /// Finally, remember that in \c C++, a \c Derived** is
352 /// not a \c Base**, nor is a \c Derived*& a \c Base*&. This implies
353 /// that
354 ///
355 /// \code
356 /// TfRefPtr<Base>* bPtrPtr = &dPtr; // compilation error
357 /// TfRefPtr<Base>& bPtrRef = dPtr; // compilation error
358 /// const TfRefPtr<Base>&bPtrRef = dPtr; // OK
359 /// \endcode
360 ///
361 /// The last initialization is legal because the compiler implicitly
362 /// converts dPtr into a temporary variable of type \c TfRefPtr<Base>.
363 ///
364 ///
365 /// <B> Thread Safety </B>
366 ///
367 /// One more comment about thread-safety: the above examples are thread-safe
368 /// in the sense that if two or more threads create and destroy their \e own
369 /// \c TfRefPtr objects, the reference counts of the underlying objects are
370 /// always correct; said another way, the reference count it a thread-safe
371 /// quantity.
372 ///
373 /// However, it is never safe for two threads to simultaneously try to alter
374 /// the same \c TfRefPtr object, nor can two threads safely call methods on the
375 /// same underlying object unless that object itself guarantees thread safety.
376 ///
377 /// \anchor refPtr_Tracking
378 /// <B> Tracking References </B>
379 ///
380 /// The \c TfRefPtrTracker singleton can track \c TfRefPtr objects that
381 /// point to particular instances. The macros \c TF_DECLARE_REFBASE_TRACK
382 /// and \c TF_DEFINE_REFBASE_TRACK are used to enable tracking. Tracking
383 /// is enabled at compile time but which instances to track is chosen at
384 /// runtime.
385 ///
386 /// <B> Total Encapsulation </B>
387 /// \anchor refPtr_encapsulation
388 ///
389 /// If you're using \c TfRefPtrs on a type \c T, you probably want
390 /// to completely forbid clients from creating their own objects of
391 /// type \c T, and force them to go through \c TfRefPtrs. Such
392 /// encapsulation is strongly encouraged. Here is the recommended
393 /// technique:
394 ///
395 /// \code
396 ///
397 /// typedef TfRefPtr<class Simple> SimpleRefPtr;
398 ///
399 /// class Simple : public TfRefBase {
400 /// private: // use protected if you plan to derive later
401 /// Simple();
402 /// Simple(<arg-list>);
403 /// public:
404 /// static SimpleRefPtr New() {
405 /// return TfCreateRefPtr(new Simple);
406 /// }
407 ///
408 /// static SimpleRefPtr New(<arg-list>) {
409 /// return TfCreateRefPtr(new Simple(<arg-list>));
410 /// }
411 ///
412 /// ~Simple();
413 /// };
414 /// \endcode
415 ///
416 /// Clients can now only create objects of type \c Simple using a
417 /// \c TfRefPtr:
418 ///
419 /// \code
420 /// Simple s; // compilation error
421 /// SimpleRefPtr sPtr1 = new Simple; // compilation error
422 /// SimpleRefPtr sPtr2 = Simple::New(); // OK
423 /// SimpleRefPtr sPtr3 = Simple::New(<arg-list>); // Ok
424 /// \endcode
425 ///
426 
427 #include "pxr/pxr.h"
428 
430 #include "pxr/base/tf/nullPtr.h"
431 #include "pxr/base/tf/refBase.h"
434 #include "pxr/base/tf/api.h"
435 
436 #include "pxr/base/arch/hints.h"
437 
438 #include <hboost/functional/hash_fwd.hpp>
439 #include <hboost/mpl/if.hpp>
440 #include <hboost/type_traits/is_base_of.hpp>
441 #include <hboost/type_traits/is_convertible.hpp>
442 #include <hboost/type_traits/is_same.hpp>
443 #include <hboost/utility/enable_if.hpp>
444 
445 #include <typeinfo>
446 #include <type_traits>
447 #include <cstddef>
448 
450 
451 // Tf_SupportsUniqueChanged is a metafunction that may be specialized to return
452 // false for classes (and all derived classes) that *cannot* ever invoke unique
453 // changed listeners.
454 template <class T>
456  static const bool Value = true;
457 };
458 
459 // Remnants are never able to support weak changed listeners.
460 class Tf_Remnant;
461 template <>
463  static const bool Value = false;
464 };
465 
466 class TfWeakBase;
467 
468 template <class T> class TfWeakPtr;
469 template <template <class> class X, class Y>
471 
472 // Functions used for tracking. Do not implement these.
473 inline void Tf_RefPtrTracker_FirstRef(const void*, const void*) { }
474 inline void Tf_RefPtrTracker_LastRef(const void*, const void*) { }
475 inline void Tf_RefPtrTracker_New(const void*, const void*) { }
476 inline void Tf_RefPtrTracker_Delete(const void*, const void*) { }
477 inline void Tf_RefPtrTracker_Assign(const void*, const void*, const void*) { }
478 
479 // This code is used to increment and decrement ref counts in the common case.
480 // It may lock and invoke the unique changed listener, if the reference count
481 // becomes unique or non-unique.
483  static inline int
484  AddRef(TfRefBase const *refBase)
485  {
486  if (refBase) {
487  // Check to see if we need to invoke the unique changed listener.
488  if (refBase->_shouldInvokeUniqueChangedListener)
489  return _AddRef(refBase);
490  else
491  return refBase->GetRefCount()._FetchAndAdd(1);
492  }
493  return 0;
494  }
495 
496  static inline bool
497  RemoveRef(TfRefBase const* refBase) {
498  if (refBase) {
499  // Check to see if we need to invoke the unique changed listener.
500  return refBase->_shouldInvokeUniqueChangedListener ?
501  _RemoveRef(refBase) :
502  refBase->GetRefCount()._DecrementAndTestIfZero();
503  }
504  return false;
505  }
506 
507  // Increment ptr's count if it is not zero. Return true if done so
508  // successfully, false if its count is zero.
509  static inline bool
511  if (!ptr)
512  return false;
513  if (ptr->_shouldInvokeUniqueChangedListener) {
514  return _AddRefIfNonzero(ptr);
515  } else {
516  auto &counter = ptr->GetRefCount()._counter;
517  auto val = counter.load();
518  do {
519  if (val == 0)
520  return false;
521  } while (!counter.compare_exchange_weak(val, val + 1));
522  return true;
523  }
524  }
525 
526  TF_API static bool _RemoveRef(TfRefBase const *refBase);
527 
528  TF_API static int _AddRef(TfRefBase const *refBase);
529 
530  TF_API static bool _AddRefIfNonzero(TfRefBase const *refBase);
531 };
532 
533 // This code is used to increment and decrement ref counts in the case where
534 // the object pointed to explicitly does not support unique changed listeners.
536  static inline int
537  AddRef(TfRefBase const *refBase) {
538  if (refBase)
539  return refBase->GetRefCount()._FetchAndAdd(1);
540  return 0;
541  }
542 
543  static inline bool
545  return (ptr && (ptr->GetRefCount()._DecrementAndTestIfZero()));
546  }
547 
548  // Increment ptr's count if it is not zero. Return true if done so
549  // successfully, false if its count is zero.
550  static inline bool
552  if (!ptr)
553  return false;
554  auto &counter = ptr->GetRefCount()._counter;
555  auto val = counter.load();
556  do {
557  if (val == 0)
558  return false;
559  } while (!counter.compare_exchange_weak(val, val + 1));
560  return true;
561  }
562 };
563 
564 // Helper to post a fatal error when a NULL Tf pointer is dereferenced.
565 [[noreturn]]
566 TF_API void
568  const TfCallContext &, const std::type_info &);
569 
570 /// \class TfRefPtr
571 /// \ingroup group_tf_Memory
572 ///
573 /// Reference-counted smart pointer utility class
574 ///
575 /// The \c TfRefPtr class implements a reference counting on objects
576 /// that inherit from \c TfRefBase.
577 ///
578 /// For more information, see either the \ref refPtr_QuickStart "Quick Start"
579 /// example or read the \ref refPtr_DetailedDiscussion "detailed discussion".
580 ///
581 template <class T>
582 class TfRefPtr {
583  // Select the counter based on whether T supports unique changed listeners.
584  typedef typename hboost::mpl::if_c<
588  Tf_RefPtr_Counter>::type _Counter;
589 
590 public:
591  /// Convenience type accessor to underlying type \c T for template code.
592  typedef T DataType;
593 
594 
595  template <class U> struct Rebind {
596  typedef TfRefPtr<U> Type;
597  };
598 
599  /// Initialize pointer to nullptr.
600  ///
601  /// The default constructor leaves the pointer initialized to point to the
602  /// NULL object. Attempts to use the \c -> operator will cause an abort
603  /// until the pointer is given a value.
604  TfRefPtr() : _refBase(nullptr) {
605  Tf_RefPtrTracker_New(this, _GetObjectForTracking());
606  }
607 
608  /// Moves the pointer managed by \p p to \c *this.
609  ///
610  /// After construction, \c *this will point to the object \p p had
611  /// been pointing at and \p p will be pointing at the NULL object.
612  /// The reference count of the object being pointed at does not
613  /// change.
614  TfRefPtr(TfRefPtr<T>&& p) : _refBase(p._refBase) {
615  p._refBase = nullptr;
616  Tf_RefPtrTracker_New(this, _GetObjectForTracking());
617  Tf_RefPtrTracker_Assign(&p, p._GetObjectForTracking(),
618  _GetObjectForTracking());
619  }
620 
621  /// Initializes \c *this to point at \p p's object.
622  ///
623  /// Increments \p p's object's reference count.
624  TfRefPtr(const TfRefPtr<T>& p) : _refBase(p._refBase) {
625  _AddRef();
626  Tf_RefPtrTracker_New(this, _GetObjectForTracking());
627  }
628 
629  /// Initializes \c *this to point at \p gp's object.
630  ///
631  /// Increments \p gp's object's reference count.
632  template <template <class> class X, class U>
633  inline TfRefPtr(const TfWeakPtrFacade<X, U>& p,
634  typename hboost::enable_if<
635  hboost::is_convertible<U*, T*>
636  >::type *dummy = 0);
637 
638  /// Transfer a raw pointer to a reference-counted pointer.
639  ///
640  /// The \c TfCreateRefPtr() function should only be used from within a
641  /// static \c New() function (or similarly, a \c Clone() function) of a
642  /// reference-counted class. Reference-counted objects have their
643  /// reference count initially set to one to account for the fact that a
644  /// newly created object must always persist at least until its \c New()
645  /// function returns. Therefore, the transfer of the pointer returned by
646  /// \c new into a reference pointer must \e not increase the reference
647  /// count. The transfer of the raw pointer returned by \c new into the
648  /// object returned by \c New() is a "transfer of ownership" and does not
649  /// represent an additional reference to the object.
650  ///
651  /// In summary, this code is wrong, and will return an object that can
652  /// never be destroyed:
653  ///
654  /// \code
655  /// SimpleRefPtr Simple::New() {
656  /// return SimpleRefPtr(new Simple); // legal, but leaks memory: beware!!
657  /// }
658  /// \endcode
659  ///
660  /// The correct form is
661  ///
662  /// \code
663  /// SimpleRefPtr Simple::New() {
664  /// return TfCreateRefPtr(new Simple);
665  /// }
666  /// \endcode
667  ///
668  /// Note also that a function which is essentially like \c New(),
669  /// for example \c Clone(), would also want to use \c TfCreateRefPtr().
670 #if defined(doxygen)
671  friend inline TfRefPtr TfCreateRefPtr(T*);
672 #else
673  template <class U>
674  friend inline TfRefPtr<U> TfCreateRefPtr(U*);
675 #endif
676 
677  /// Initializes to point at \c *ptr.
678  ///
679  /// Increments \c *ptr's reference count. Note that newly constructed
680  /// objects start with a reference count of one. Therefore, you should \e
681  /// NOT use this constructor (either implicitly or explicitly) from within
682  /// a \c New() function. Use \c TfCreateRefPtr() instead.
683  template <class U>
684  explicit TfRefPtr(
685  U* ptr, typename std::enable_if<
687  _refBase(ptr)
688  {
689  _AddRef();
690  Tf_RefPtrTracker_New(this, _GetObjectForTracking());
691  }
692 
693  /// Implicit conversion from \a TfNullPtr to TfRefPtr.
694  TfRefPtr(TfNullPtrType) : _refBase(nullptr)
695  {
696  Tf_RefPtrTracker_New(this, _GetObjectForTracking());
697  }
698 
699  /// Implicit conversion from \a nullptr to TfRefPtr.
700  TfRefPtr(std::nullptr_t) : _refBase(nullptr)
701  {
702  Tf_RefPtrTracker_New(this, _GetObjectForTracking());
703  }
704 
705  /// Assigns pointer to point at \c p's object, and increments reference
706  /// count.
707  ///
708  /// The object (if any) pointed at before the assignment has its
709  /// reference count decremented, while the object newly pointed at
710  /// has its reference count incremented.
711  /// If the object previously pointed to now has nobody left to point at it,
712  /// the object will typically be destroyed at this point.
713  ///
714  /// An assignment
715  /// \code
716  /// ptr = TfNullPtr;
717  /// \endcode
718  ///
719  /// can be used to make \c ptr "forget" where it is pointing; note
720  /// however that this has an important side effect, since it
721  /// decrements the reference count of the object previously pointed
722  /// to by \c ptr, possibly triggering destruction of that object.
724  //
725  // It is quite possible for
726  // ptr = TfNullPtr;
727  // to delete the space that ptr actually lives in (this happens
728  // when you use a circular reference to keep an object alive).
729  // To avoid a crash, we have to ensure that deletion of the object
730  // is the last thing done in the assignment; so we use some
731  // local variables to help us out.
732  //
733 
734  Tf_RefPtrTracker_Assign(this, p._GetObjectForTracking(),
735  _GetObjectForTracking());
736 
737  const TfRefBase* tmp = _refBase;
738  _refBase = p._refBase;
739 
740  p._AddRef(); // first!
741  _RemoveRef(tmp); // second!
742  return *this;
743  }
744 
745  /// Moves the pointer managed by \p p to \c *this and leaves \p p
746  /// pointing at the NULL object.
747  ///
748  /// The object (if any) pointed at before the assignment has its
749  /// reference count decremented, while the reference count of the
750  /// object newly pointed at is not changed.
752  // See comment in assignment operator.
753  Tf_RefPtrTracker_Assign(this, p._GetObjectForTracking(),
754  _GetObjectForTracking());
755  Tf_RefPtrTracker_Assign(&p, nullptr,
756  p._GetObjectForTracking());
757 
758  const TfRefBase* tmp = _refBase;
759  _refBase = p._refBase;
760  p._refBase = nullptr;
761 
762  _RemoveRef(tmp);
763  return *this;
764  }
765 
766  /// Decrements reference count of object being pointed to.
767  ///
768  /// If the reference count of the object (if any) that was just pointed at
769  /// reaches zero, the object will typically be destroyed at this point.
771  Tf_RefPtrTracker_Delete(this, _GetObjectForTracking());
772  _RemoveRef(_refBase);
773  }
774 
775 private:
776 
777  // Compile error if a U* cannot be assigned to a T*.
778  template <class U>
779  static void _CheckTypeAssignability() {
780  T* unused = (U*)0;
781  if (unused) unused = 0;
782  }
783 
784  // Compile error if a T* and U* cannot be compared.
785  template <class U>
786  static void _CheckTypeComparability() {
787  bool unused = ((T*)0 == (U*)0);
788  if (unused) unused = false;
789  }
790 
791 public:
792 
793  /// Initializes to point at \c p's object, and increments reference count.
794  ///
795  /// This initialization is legal only if
796  /// \code
797  /// U* uPtr;
798  /// T* tPtr = uPtr;
799  /// \endcode
800  /// is legal.
801 #if !defined(doxygen)
802  template <class U>
803 #endif
804  TfRefPtr(const TfRefPtr<U>& p) : _refBase(p._refBase) {
806  if (false)
807  _CheckTypeAssignability<U>();
808  }
809 
810  _AddRef();
811  Tf_RefPtrTracker_New(this, _GetObjectForTracking());
812  }
813 
814  /// Moves the pointer managed by \p p to \c *this and leaves \p p
815  /// pointing at the NULL object. The reference count of the object
816  /// being pointed to is not changed.
817  ///
818  /// This initialization is legal only if
819  /// \code
820  /// U* uPtr;
821  /// T* tPtr = uPtr;
822  /// \endcode
823  /// is legal.
824 #if !defined(doxygen)
825  template <class U>
826 #endif
827  TfRefPtr(TfRefPtr<U>&& p) : _refBase(p._refBase) {
829  if (false)
830  _CheckTypeAssignability<U>();
831  }
832 
833  p._refBase = nullptr;
834  Tf_RefPtrTracker_New(this, _GetObjectForTracking());
835  Tf_RefPtrTracker_Assign(&p, p._GetObjectForTracking(),
836  _GetObjectForTracking());
837  }
838 
839  /// Assigns pointer to point at \c p's object, and increments reference
840  /// count.
841  ///
842  /// This assignment is legal only if
843  /// \code
844  /// U* uPtr;
845  /// T* tPtr;
846  /// tPtr = uPtr;
847  /// \endcode
848  /// is legal.
849 #if !defined(doxygen)
850  template <class U>
851 #endif
854  if (false)
855  _CheckTypeAssignability<U>();
856  }
857 
859  reinterpret_cast<T*>(p._GetObjectForTracking()),
860  _GetObjectForTracking());
861  const TfRefBase* tmp = _refBase;
862  _refBase = p._GetData();
863  p._AddRef(); // first!
864  _RemoveRef(tmp); // second!
865  return *this;
866  }
867 
868  /// Moves the pointer managed by \p p to \c *this and leaves \p p
869  /// pointing at the NULL object. The reference count of the object
870  /// being pointed to is not changed.
871  ///
872  /// This assignment is legal only if
873  /// \code
874  /// U* uPtr;
875  /// T* tPtr;
876  /// tPtr = uPtr;
877  /// \endcode
878  /// is legal.
879 #if !defined(doxygen)
880  template <class U>
881 #endif
884  if (false)
885  _CheckTypeAssignability<U>();
886  }
887 
889  reinterpret_cast<T*>(p._GetObjectForTracking()),
890  _GetObjectForTracking());
892  nullptr,
893  reinterpret_cast<T*>(p._GetObjectForTracking()));
894  const TfRefBase* tmp = _refBase;
895  _refBase = p._GetData();
896  p._refBase = nullptr;
897  _RemoveRef(tmp);
898  return *this;
899  }
900 
901  /// Returns true if \c *this and \c p point to the same object (or if they
902  /// both point to NULL).
903  ///
904  /// The comparison is legal only if a \c T* and a \c U* are comparable.
905 #if !defined(doxygen)
906  template <class U>
907 #endif
908  bool operator== (const TfRefPtr<U>& p) const {
909  if (false)
910  _CheckTypeComparability<U>();
911 
912  return _refBase == p._refBase;
913  }
914 
915  /// Returns true if the address of the object pointed to by \c *this
916  /// compares less than the address of the object pointed to by \p p.
917  ///
918  /// The comparison is legal only if a \c T* and a \c U* are comparable.
919 #if !defined(doxygen)
920  template <class U>
921 #endif
922  bool operator< (const TfRefPtr<U>& p) const {
923  if (false)
924  _CheckTypeComparability<U>();
925 
926  return _refBase < p._refBase;
927  }
928 
929 #if !defined(doxygen)
930  template <class U>
931 #endif
932  bool operator> (const TfRefPtr<U>& p) const {
933  if (false)
934  _CheckTypeComparability<U>();
935 
936  return _refBase > p._refBase;
937  }
938 
939 #if !defined(doxygen)
940  template <class U>
941 #endif
942  bool operator<= (const TfRefPtr<U>& p) const {
943  if (false)
944  _CheckTypeComparability<U>();
945 
946  return _refBase <= p._refBase;
947  }
948 
949 #if !defined(doxygen)
950  template <class U>
951 #endif
952  bool operator>= (const TfRefPtr<U>& p) const {
953  if (false)
954  _CheckTypeComparability<U>();
955 
956  return _refBase >= p._refBase;
957  }
958 
959  /// Returns true if \c *this and \c p do not point to the same object.
960  ///
961  /// The comparison is legal only if a \c T* and a \c U* are comparable.
962 #if !defined(doxygen)
963  template <class U>
964 #endif
965  bool operator!= (const TfRefPtr<U>& p) const {
966  if (false)
967  _CheckTypeComparability<U>();
968 
969  return _refBase != p._refBase;
970  }
971 
972  /// Accessor to \c T's public members.
973  T* operator ->() const {
974  if (ARCH_LIKELY(_refBase)) {
975  return static_cast<T*>(const_cast<TfRefBase*>(_refBase));
976  }
977  static const TfCallContext ctx(TF_CALL_CONTEXT);
979  }
980 
981  /// Dereferences the stored pointer.
982  T& operator *() const {
983  return *operator->();
984  }
985 
986 #if !defined(doxygen)
987  using UnspecifiedBoolType = const TfRefBase * (TfRefPtr::*);
988 #endif
989 
990  /// True if the pointer points to an object.
991  operator UnspecifiedBoolType() const {
992  return _refBase ? &TfRefPtr::_refBase : nullptr;
993  }
994 
995  /// True if the pointer points to \c NULL.
996  bool operator !() const {
997  return _refBase == nullptr;
998  }
999 
1000  /// Swap this pointer with \a other.
1001  /// After this operation, this pointer will point to what \a other
1002  /// formerly pointed to, and \a other will point to what this pointer
1003  /// formerly pointed to.
1004  void swap(TfRefPtr &other) {
1005  Tf_RefPtrTracker_Assign(this, other._GetObjectForTracking(),
1006  _GetObjectForTracking());
1007  Tf_RefPtrTracker_Assign(&other, _GetObjectForTracking(),
1008  other._GetObjectForTracking());
1009  std::swap(_refBase, other._refBase);
1010  }
1011 
1012  /// Set this pointer to point to no object.
1013  /// Equivalent to assignment with TfNullPtr.
1014  void Reset() {
1015  *this = TfNullPtr;
1016  }
1017 
1018 private:
1019  const TfRefBase* _refBase;
1020 
1021  template <class HashState, class U>
1022  friend inline void TfHashAppend(HashState &, const TfRefPtr<U>&);
1023  template <class U>
1024  friend inline size_t hash_value(const TfRefPtr<U>&);
1025 
1026  friend T *get_pointer(TfRefPtr const &p) {
1027  return static_cast<T *>(const_cast<TfRefBase *>(p._refBase));
1028  }
1029 
1030  // Used to distinguish construction in TfCreateRefPtr.
1031  class _CreateRefPtr { };
1032 
1033  // private constructor, used by TfCreateRefPtr()
1034  TfRefPtr(T* ptr, _CreateRefPtr /* unused */)
1035  : _refBase(ptr)
1036  {
1037  /* reference count is NOT bumped */
1038  Tf_RefPtrTracker_FirstRef(this, _GetObjectForTracking());
1039  Tf_RefPtrTracker_New(this, _GetObjectForTracking());
1040  }
1041 
1042  // Hide confusing internals of actual C++ definition (e.g. DataType)
1043  // for doxygen output:
1044 
1045  /// Allows dynamic casting of a \c TfRefPtr.
1046  ///
1047  /// If it is legal to dynamically cast a \c T* to a \c D* , then
1048  /// the following is also legal:
1049  /// \code
1050  /// TfRefPtr<T> tPtr = ... ;
1051  /// TfRefPtr<D> dPtr;
1052  ///
1053  /// if (!(dPtr = TfDynamic_cast< TfRefPtr<D> >(tPtr)))
1054  /// ...; // cast failed
1055  /// \endcode
1056  /// The runtime performance of this function is exactly the same
1057  /// as a \c dynamic_cast (i.e. one virtual function call). If the pointer
1058  /// being cast is NULL or does not point to an object of the requisite
1059  /// type, the result is a \c TfRefPtr pointing to NULL.
1060 #if defined(doxygen)
1061  // Sanitized for documentation:
1062  template <class D>
1063  friend inline TfRef<D> TfDynamic_cast(const TfRefPtr<T>&);
1064 #else
1065  template <class D, class B>
1067  TfDynamic_cast(const TfRefPtr<B>&);
1068 
1069  template <class D, class B>
1072 #endif
1073 
1074  /// Allows static casting of a \c TfRefPtr.
1075  ///
1076  /// If it is legal to statically cast a \c T* to a \c D* , then
1077  /// the following is also legal:
1078  /// \code
1079  /// TfRefPtr<T> tPtr = ... ;
1080  /// TfRefPtr<D> dPtr;
1081  ///
1082  /// dPtr = TfStatic_cast< TfRefPtr<D> >(tPtr);
1083  /// \endcode
1084  /// The runtime performance of this function is exactly the same
1085  /// as a regular \c TfRefPtr initialization, since the cost of
1086  /// the underlying \c static_cast is zero. Of course, a \c TfDynamic_cast
1087  /// is preferred, assuming the underlying types are polymorphic
1088  /// (i.e. have virtual functions).
1089  ///
1090 #if defined(doxygen)
1091  // Sanitized for documentation:
1092  template <class D>
1093  friend inline TfRefPtr<D> TfStatic_cast(const TfRefPtr<T>&);
1094 #else
1095  template <class D, class B>
1097  TfStatic_cast(const TfRefPtr<B>&);
1098 
1099 #endif
1100 
1101  /// Allows const casting of a \c TfRefPtr.
1102  ///
1103  /// The following is always legal:
1104  /// \code
1105  /// TfRefPtr<const T> cPtr = ...;
1106  /// TfRefPtr<T> tPtr;
1107  ///
1108  /// tPtr = TfConst_cast< TfRefPtr<T> >(cPtr);
1109  /// \endcode
1110  /// As with the C++ \c const_cast operator, use of this function is
1111  /// discouraged.
1112 #if defined(doxygen)
1113  // Sanitized for documentation:
1114  template <class D>
1115  friend inline TfRefPtr<D> TfConst_cast(const TfRefPtr<const D>&);
1116 #else
1117  template <class D>
1120 #endif
1121 
1122  T* _GetData() const {
1123  return static_cast<T*>(const_cast<TfRefBase*>(_refBase));
1124  }
1125 
1126  // This method is only used when calling the hook functions for
1127  // tracking. We reinterpret_cast instead of static_cast so that
1128  // we don't need the definition of T. However, if TfRefBase is
1129  // not the first base class of T then the resulting pointer may
1130  // not point to a T. Nevertheless, it should be consistent to
1131  // all calls to the tracking functions.
1132  T* _GetObjectForTracking() const {
1133  return reinterpret_cast<T*>(const_cast<TfRefBase*>(_refBase));
1134  }
1135 
1136  /// Call \c typeid on the object pointed to by a \c TfRefPtr.
1137  ///
1138  /// If \c ptr is a \c TfRefPtr, \c typeid(ptr) will return
1139  /// type information about the \c TfRefPtr. To access type
1140  /// information about the object pointed to by a \c TfRefPtr,
1141  /// one can use \c TfTypeid.
1142 
1143  template <class U>
1144  friend const std::type_info& TfTypeid(const TfRefPtr<U>& ptr);
1145 
1146  void _AddRef() const {
1147  _Counter::AddRef(_refBase);
1148  }
1149 
1150  void _RemoveRef(const TfRefBase* ptr) const {
1151  if (_Counter::RemoveRef(ptr)) {
1153  reinterpret_cast<T*>(const_cast<TfRefBase*>(ptr)));
1154  delete ptr;
1155  }
1156  }
1157 
1158 #if ! defined(doxygen)
1159  // doxygen is very confused by this. It declares all TfRefPtrs
1160  // to be friends.
1161  template <class U> friend class TfRefPtr;
1162  template <class U> friend class TfWeakPtr;
1163  friend class Tf_Remnant;
1164 
1165  template <class U>
1167 #endif
1168  friend class TfWeakBase;
1169 };
1170 
1171 #if !defined(doxygen)
1172 
1173 //
1174 // nullptr comparisons
1175 //
1176 // These are provided to avoid ambiguous overloads due to
1177 // TfWeakPtrFacade::Derived comparisons with TfRefPtr.
1178 //
1179 
1180 template <class T>
1181 inline bool operator== (const TfRefPtr<T> &p, std::nullptr_t)
1182 {
1183  return !p;
1184 }
1185 template <class T>
1186 inline bool operator== (std::nullptr_t, const TfRefPtr<T> &p)
1187 {
1188  return !p;
1189 }
1190 
1191 template <class T>
1192 inline bool operator!= (const TfRefPtr<T> &p, std::nullptr_t)
1193 {
1194  return !(p == nullptr);
1195 }
1196 template <class T>
1197 inline bool operator!= (std::nullptr_t, const TfRefPtr<T> &p)
1198 {
1199  return !(nullptr == p);
1200 }
1201 
1202 template <class T>
1203 inline bool operator< (const TfRefPtr<T> &p, std::nullptr_t)
1204 {
1205  return std::less<const TfRefBase *>()(get_pointer(p), nullptr);
1206 }
1207 template <class T>
1208 inline bool operator< (std::nullptr_t, const TfRefPtr<T> &p)
1209 {
1210  return std::less<const TfRefBase *>()(nullptr, get_pointer(p));
1211 }
1212 
1213 template <class T>
1214 inline bool operator<= (const TfRefPtr<T> &p, std::nullptr_t)
1215 {
1216  return !(nullptr < p);
1217 }
1218 template <class T>
1219 inline bool operator<= (std::nullptr_t, const TfRefPtr<T> &p)
1220 {
1221  return !(p < nullptr);
1222 }
1223 
1224 template <class T>
1225 inline bool operator> (const TfRefPtr<T> &p, std::nullptr_t)
1226 {
1227  return nullptr < p;
1228 }
1229 template <class T>
1230 inline bool operator> (std::nullptr_t, const TfRefPtr<T> &p)
1231 {
1232  return p < nullptr;
1233 }
1234 
1235 template <class T>
1236 inline bool operator>= (const TfRefPtr<T> &p, std::nullptr_t)
1237 {
1238  return !(p < nullptr);
1239 }
1240 template <class T>
1241 inline bool operator>= (std::nullptr_t, const TfRefPtr<T> &p)
1242 {
1243  return !(nullptr < p);
1244 }
1245 
1246 
1247 template <typename T>
1249  return TfRefPtr<T>(ptr, typename TfRefPtr<T>::_CreateRefPtr());
1250 }
1251 
1252 template <class T>
1253 const std::type_info&
1255 {
1256  if (ARCH_UNLIKELY(!ptr._refBase))
1257  TF_FATAL_ERROR("called TfTypeid on NULL TfRefPtr");
1258 
1259  return typeid(*ptr._GetData());
1260 }
1261 
1262 template <class D, class T>
1263 inline
1266 {
1267  typedef TfRefPtr<typename D::DataType> RefPtr;
1268  return RefPtr(dynamic_cast<typename D::DataType*>(ptr._GetData()));
1269 }
1270 
1271 template <class D, class T>
1272 inline
1275 {
1276  typedef TfRefPtr<typename D::DataType> RefPtr;
1277  return RefPtr(TfSafeDynamic_cast<typename D::DataType*>(ptr._GetData()));
1278 }
1279 
1280 template <class D, class T>
1281 inline
1284 {
1285  typedef TfRefPtr<typename D::DataType> RefPtr;
1286  return RefPtr(static_cast<typename D::DataType*>(ptr._GetData()));
1287 }
1288 
1289 template <class T>
1290 inline
1293 {
1294  // this ugly cast allows TfConst_cast to work without requiring
1295  // a definition for T.
1296  typedef TfRefPtr<typename T::DataType> NonConstRefPtr;
1297  return *((NonConstRefPtr*)(&ptr));
1298 }
1299 
1300 // Specialization: prevent construction of a TfRefPtr<TfRefBase>.
1301 
1302 template <>
1304 private:
1306  }
1307 };
1308 
1309 template <>
1311 private:
1313  }
1314 };
1315 
1316 template <class T>
1318  static T* GetRawPtr(const TfRefPtr<T>& t) {
1319  return t.operator-> ();
1320  }
1321 
1323  return TfRefPtr<T>(ptr);
1324  }
1325 
1326  static bool IsNull(const TfRefPtr<T>& t) {
1327  return !t;
1328  }
1329 
1332 };
1333 
1334 template <class T>
1336  static const T* GetRawPtr(const TfRefPtr<const T>& t) {
1337  return t.operator-> ();
1338  }
1339 
1341  return TfRefPtr<const T>(ptr);
1342  }
1343 
1344  static bool IsNull(const TfRefPtr<const T>& t) {
1345  return !t;
1346  }
1347 
1349 };
1350 
1351 #endif
1352 
1353 #if !defined(doxygen)
1354 
1355 template <class T>
1356 inline void
1358 {
1359  lhs.swap(rhs);
1360 }
1361 
1363 
1364 namespace hboost {
1365 
1366 template<typename T>
1367 T *
1368 get_pointer(PXR_NS::TfRefPtr<T> const& p)
1369 {
1370  return get_pointer(p);
1371 }
1372 
1373 } // end namespace hboost
1374 
1376 
1377 // Extend hboost::hash to support TfRefPtr.
1378 template <class T>
1379 inline size_t
1381 {
1382  // Make the hboost::hash type depend on T so that we don't have to always
1383  // include hboost/functional/hash.hpp in this header for the definition of
1384  // hboost::hash.
1385  auto refBase = ptr._refBase;
1386  return hboost::hash<decltype(refBase)>()(refBase);
1387 }
1388 
1389 template <class HashState, class T>
1390 inline void
1391 TfHashAppend(HashState &h, const TfRefPtr<T> &ptr)
1392 {
1393  h.Append(get_pointer(ptr));
1394 }
1395 
1396 #endif // !doxygen
1397 
1398 #define TF_SUPPORTS_REFPTR(T) hboost::is_base_of<TfRefBase, T >::value
1399 
1400 #if defined(ARCH_COMPILER_MSVC)
1401 // There is a bug in the compiler which means we have to provide this
1402 // implementation. See here for more information:
1403 // https://connect.microsoft.com/VisualStudio/Feedback/Details/2852624
1404 
1405 #define TF_REFPTR_CONST_VOLATILE_GET(x) \
1406  namespace hboost \
1407  { \
1408  template<> \
1409  const volatile x* \
1410  get_pointer(const volatile x* p) \
1411  { \
1412  return p; \
1413  } \
1414  }
1415 #else
1416 #define TF_REFPTR_CONST_VOLATILE_GET(x)
1417 #endif
1418 
1420 
1421 #endif // PXR_BASE_TF_REF_PTR_H
#define ARCH_LIKELY(x)
Definition: hints.h:46
void swap(ArAssetInfo &lhs, ArAssetInfo &rhs)
Definition: assetInfo.h:60
static void Class_Object_MUST_Be_Passed_By_Address()
Definition: refPtr.h:1330
TfRefPtr< T > TfCreateRefPtr(T *ptr)
Definition: refPtr.h:1248
#define TF_CALL_CONTEXT
Definition: callContext.h:47
PXR_NAMESPACE_OPEN_SCOPE size_t hash_value(const TfRefPtr< T > &ptr)
Definition: refPtr.h:1380
TfRefPtr< typename T::DataType > TfConst_cast(const TfRefPtr< const typename T::DataType > &ptr)
Definition: refPtr.h:1292
static TfRefPtr< const T > ConstructFromRawPtr(T *ptr)
Definition: refPtr.h:1340
#define TF_API
Definition: api.h:40
friend size_t hash_value(const TfRefPtr< U > &)
TfRefPtr(TfNullPtrType)
Implicit conversion from TfNullPtr to TfRefPtr.
Definition: refPtr.h:694
const TfRefCount & GetRefCount() const
Definition: refBase.h:93
void swap(UT::ArraySet< Key, MULTI, MAX_LOAD_FACTOR_256, Clearer, Hash, KeyEqual > &a, UT::ArraySet< Key, MULTI, MAX_LOAD_FACTOR_256, Clearer, Hash, KeyEqual > &b)
Definition: UT_ArraySet.h:1629
bool operator>(const TfRefPtr< U > &p) const
Definition: refPtr.h:932
GLuint const GLfloat * val
Definition: glew.h:2794
static bool RemoveRef(TfRefBase const *ptr)
Definition: refPtr.h:544
const TfRefBase *(TfRefPtr::*) UnspecifiedBoolType
Definition: refPtr.h:987
static bool IsNull(const TfRefPtr< T > &t)
Definition: refPtr.h:1326
TF_API const TfNullPtrType TfNullPtr
static void Class_Object_MUST_Be_Passed_By_Address()
Definition: refPtr.h:1348
void Tf_RefPtrTracker_LastRef(const void *, const void *)
Definition: refPtr.h:474
friend T * get_pointer(TfRefPtr const &p)
Definition: refPtr.h:1026
friend TfRefPtr< U > TfCreateRefPtr(U *)
bool operator>=(const TfRefPtr< U > &p) const
Definition: refPtr.h:952
TfRefPtr< T > & operator=(const TfRefPtr< T > &p)
Definition: refPtr.h:723
Y * get_pointer(TfWeakPtrFacade< X, Y > const &p)
Definition: weakPtrFacade.h:86
bool operator!() const
True if the pointer points to NULL.
Definition: refPtr.h:996
friend TfRefPtr< typename D::DataType > TfSafeDynamic_cast(const TfRefPtr< B > &)
void Tf_RefPtrTracker_Delete(const void *, const void *)
Definition: refPtr.h:476
TfRefPtr(U *ptr, typename std::enable_if< std::is_convertible< U *, T * >::value >::type *=nullptr)
Definition: refPtr.h:684
T & operator*() const
Dereferences the stored pointer.
Definition: refPtr.h:982
static bool RemoveRef(TfRefBase const *refBase)
Definition: refPtr.h:497
TfRefPtr< typename D::DataType > TfDynamic_cast(const TfRefPtr< T > &ptr)
Definition: refPtr.h:1265
#define ARCH_UNLIKELY(x)
Definition: hints.h:47
bool operator!=(const TfRefPtr< U > &p) const
Definition: refPtr.h:965
TfRefPtr(const TfRefPtr< T > &p)
Definition: refPtr.h:624
static TF_API bool _AddRefIfNonzero(TfRefBase const *refBase)
T * get_pointer(PXR_NS::TfRefPtr< T > const &p)
Definition: refPtr.h:1368
TF_API void Tf_PostNullSmartPtrDereferenceFatalError(const TfCallContext &, const std::type_info &)
static const T * GetRawPtr(const TfRefPtr< const T > &t)
Definition: refPtr.h:1336
TfRefPtr(TfRefPtr< U > &&p)
Definition: refPtr.h:827
TfRefPtr< T > & operator=(TfRefPtr< U > &&p)
Definition: refPtr.h:882
#define TF_FATAL_ERROR
static T * GetRawPtr(const TfRefPtr< T > &t)
Definition: refPtr.h:1318
bool operator!=(const Mat3< T0 > &m0, const Mat3< T1 > &m1)
Inequality operator, does exact floating point comparisons.
Definition: Mat3.h:563
const std::type_info & TfTypeid(const TfRefPtr< T > &ptr)
Definition: refPtr.h:1254
friend const std::type_info & TfTypeid(const TfRefPtr< U > &ptr)
static bool AddRefIfNonzero(TfRefBase const *ptr)
Definition: refPtr.h:551
TfRefPtr< typename D::DataType > TfSafeDynamic_cast(const TfRefPtr< T > &ptr)
Definition: refPtr.h:1274
GLfloat GLfloat GLfloat GLfloat h
Definition: glew.h:8011
TfRefPtr< typename D::DataType > TfStatic_cast(const TfRefPtr< T > &ptr)
Definition: refPtr.h:1283
TfRefPtr(TfRefPtr< T > &&p)
Definition: refPtr.h:614
void Tf_RefPtrTracker_New(const void *, const void *)
Definition: refPtr.h:475
static int AddRef(TfRefBase const *refBase)
Definition: refPtr.h:537
GLuint GLuint GLsizei GLenum type
Definition: glew.h:1253
static TF_API int _AddRef(TfRefBase const *refBase)
friend TfRefPtr< typename D::DataType > TfDynamic_cast(const TfRefPtr< B > &)
bool operator>(const TfRefPtr< T > &p, std::nullptr_t)
Definition: refPtr.h:1225
GLfloat GLfloat p
Definition: glew.h:16321
TfRefPtr(std::nullptr_t)
Implicit conversion from nullptr to TfRefPtr.
Definition: refPtr.h:700
PXR_NAMESPACE_CLOSE_SCOPE PXR_NAMESPACE_OPEN_SCOPE
Definition: path.h:1346
GLuint counter
Definition: glew.h:2740
const void * ptr(const T *p)
Definition: format.h:3292
TfRefPtr< T > & operator=(TfRefPtr< T > &&p)
Definition: refPtr.h:751
static bool AddRefIfNonzero(TfRefBase const *ptr)
Definition: refPtr.h:510
static bool IsNull(const TfRefPtr< const T > &t)
Definition: refPtr.h:1344
static TF_API bool _RemoveRef(TfRefBase const *refBase)
TfRefPtr()
Definition: refPtr.h:604
void Tf_RefPtrTracker_FirstRef(const void *, const void *)
Definition: refPtr.h:473
#define PXR_NAMESPACE_CLOSE_SCOPE
Definition: pxr.h:91
static TfRefPtr< T > ConstructFromRawPtr(T *ptr)
Definition: refPtr.h:1322
friend void TfHashAppend(HashState &, const TfRefPtr< U > &)
void TfHashAppend(HashState &h, const TfRefPtr< T > &ptr)
Definition: refPtr.h:1391
~TfRefPtr()
Definition: refPtr.h:770
T DataType
Convenience type accessor to underlying type T for template code.
Definition: refPtr.h:592
friend TfRefPtr< typename D::DataType > TfStatic_cast(const TfRefPtr< B > &)
bool operator>=(const TfRefPtr< T > &p, std::nullptr_t)
Definition: refPtr.h:1236
#define const
Definition: zconf.h:214
TfRefPtr(const TfRefPtr< U > &p)
Definition: refPtr.h:804
friend TfRefPtr< U > TfCreateRefPtrFromProtectedWeakPtr(TfWeakPtr< U > const &)
void Tf_RefPtrTracker_Assign(const void *, const void *, const void *)
Definition: refPtr.h:477
TfRefPtr< T > & operator=(const TfRefPtr< U > &p)
Definition: refPtr.h:852
static void Class_Object_MUST_Not_Be_Const()
Definition: refPtr.h:1331
T * operator->() const
Accessor to T's public members.
Definition: refPtr.h:973
GLsizei const GLfloat * value
Definition: glew.h:1849
static int AddRef(TfRefBase const *refBase)
Definition: refPtr.h:484
bool operator==(const TfRefPtr< U > &p) const
Definition: refPtr.h:908
friend TfRefPtr< typename D::DataType > TfConst_cast(const TfRefPtr< const typename D::DataType > &)
GLdouble GLdouble t
Definition: glew.h:1398
bool operator==(const Mat3< T0 > &m0, const Mat3< T1 > &m1)
Equality operator, does exact floating point comparisons.
Definition: Mat3.h:549
void Reset()
Definition: refPtr.h:1014
static const bool Value
Definition: refPtr.h:456
void swap(TfRefPtr &other)
Definition: refPtr.h:1004
TfRefPtr< U > Type
Definition: refPtr.h:596