HDK
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
UT_Quaternion.h
Go to the documentation of this file.
1 /*
2  * PROPRIETARY INFORMATION. This software is proprietary to
3  * Side Effects Software Inc., and is not to be reproduced,
4  * transmitted, or disclosed in any way without written permission.
5  *
6  * NAME: UT library (C++)
7  *
8  * COMMENTS: This class implements quaternions.
9  *
10  * WARNING:
11  * This class should NOT contain any virtual methods, nor should it
12  * define more member data. The size of UT_QuaternionF must always be
13  * 16 bytes (4 floats).
14  *
15  */
16 
17 #pragma once
18 
19 #ifndef __UT_Quaternion_h__
20 #define __UT_Quaternion_h__
21 
22 #include "UT_API.h"
23 #include "UT_FixedVectorTraits.h"
24 #include "UT_Vector3.h"
25 #include "UT_Vector4.h"
26 #include "UT_VectorTypes.h" // IWYU pragma: export
27 
28 #include <SYS/SYS_Inline.h>
29 #include <SYS/SYS_Math.h>
30 #include <SYS/SYS_Types.h>
31 #include <iosfwd>
32 #include <limits>
33 #include <stddef.h>
34 
35 class UT_IStream;
36 class UT_JSONParser;
37 class UT_JSONValue;
38 class UT_JSONWriter;
39 class UT_XformOrder;
40 
41 // Forward declaration
42 template <typename T> class UT_API UT_QuaternionT;
43 
44 /// Perform component-wise SYSlerp of two quaternions
45 template <typename T>
46 inline UT_QuaternionT<T>
47 SYSlerp(const UT_QuaternionT<T> &q1, const UT_QuaternionT<T> &q2, T t);
48 
49 /// Quaternion class
50 template <typename T>
52 {
53 public:
54 
55  typedef T value_type;
56  static constexpr int tuple_size = 4;
57 
58  UT_QuaternionT(T qx=0, T qy=0,
59  T qz=0, T qw=0)
60  {
61  vec[0] = qx; vec[1] = qy;
62  vec[2] = qz; vec[3] = qw;
63  }
64  UT_QuaternionT(const fpreal32 v[tuple_size])
65  {
66  vec[0] = v[0]; vec[1] = v[1];
67  vec[2] = v[2]; vec[3] = v[3];
68  }
69  UT_QuaternionT(const fpreal64 v[tuple_size])
70  {
71  vec[0] = v[0]; vec[1] = v[1];
72  vec[2] = v[2]; vec[3] = v[3];
73  }
75  {
76  vec[0] = v[0]; vec[1] = v[1];
77  vec[2] = v[2]; vec[3] = v[3];
78  }
79  inline UT_QuaternionT(T angle,
80  const UT_Vector3T<T> &axis,
81  int donormalize=1);
83  const UT_XformOrder &order)
84  {
85  updateFromEuler(rot, order);
86  }
87 
89 
90  SYS_FORCE_INLINE UT_QuaternionT(const ThisType &that) = default;
91  SYS_FORCE_INLINE UT_QuaternionT(ThisType &&that) = default;
92  SYS_FORCE_INLINE ThisType &operator=(const ThisType &that) = default;
93  SYS_FORCE_INLINE ThisType &operator=(ThisType &&that) = default;
94 
95  template <typename S>
97  { vec[0] = v.x(); vec[1] = v.y(); vec[2] = v.z(); vec[3] = v.w(); }
98  template <typename S>
100  { vec[0] = v.x(); vec[1] = v.y(); vec[2] = v.z(); vec[3] = v.w(); return *this; }
101 
103  inline UT_QuaternionT<T> &operator*=(T scalar);
104  inline UT_QuaternionT<T> &operator/=(const UT_QuaternionT<T> &quat);
105  inline UT_QuaternionT<T> &operator/=(T scalar);
106  inline UT_QuaternionT<T> &operator+=(const UT_QuaternionT<T> &quat);
107  inline bool operator==(const UT_QuaternionT<T> &quat) const;
108  inline bool operator!=(const UT_QuaternionT<T> &quat) const;
109  T operator()(int idx) const
110  { return vec[idx]; }
111  T &operator()(int idx)
112  { return vec[idx]; }
113  T operator[](int idx) const
114  { return vec[idx]; }
115  T &operator[](int idx)
116  { return vec[idx]; }
117 
118  /// Does a comparison with a tolerance. This also returns true if
119  /// quat.negated() is equal to us, unlike operator==().
120  inline bool isEqual(const UT_QuaternionT<T> &quat,
121  T tol = T(SYS_FTOLERANCE)) const;
122 
123  // The rotation this quaternion represents as a matrix
124  void getRotationMatrix(UT_Matrix3 &mat) const;
125  void getRotationMatrix(UT_DMatrix3 &mat) const;
126  void getInverseRotationMatrix(UT_Matrix3 &mat) const;
127  void getInverseRotationMatrix(UT_DMatrix3 &mat) const;
128 
129  void getTransformMatrix(UT_Matrix4 &mat) const;
130  void getTransformMatrix(UT_DMatrix4 &mat) const;
131 
132  /// Interpolates between this quat (t==0) and the target (t==1)
134  UT_QuaternionT<T> interpolate(const UT_QuaternionT<T> &target,
135  T t, T b = 0.0f) const;
136  /// Interpolates between the n quaternions in q, with weights w,
137  /// to within tolerance tol.
138  /// NOTE: The q's must be normalized, and the weights may need to sum to 1.
139  void interpolate(const UT_QuaternionT<T> *q, const T *w, exint n, T tol = T(1e-6));
140 
141  /// Do component-wise lerp between this quat (t=0) and the target (t=1).
143  {
144  vec[0] = SYSlerp(vec[0], target.vec[0], t);
145  vec[1] = SYSlerp(vec[1], target.vec[1], t);
146  vec[2] = SYSlerp(vec[2], target.vec[2], t);
147  vec[3] = SYSlerp(vec[3], target.vec[3], t);
148  }
149  /// Do component-wise lerp between this src (t=0) and dst (t=1).
151  const UT_QuaternionT<T> &dst,
152  T t)
153  {
154  vec[0] = SYSlerp(src.vec[0], dst.vec[0], t);
155  vec[1] = SYSlerp(src.vec[1], dst.vec[1], t);
156  vec[2] = SYSlerp(src.vec[2], dst.vec[2], t);
157  vec[3] = SYSlerp(src.vec[3], dst.vec[3], t);
158  }
159 
160  void assign(T qx, T qy,
161  T qz, T qw)
162  {
163  vec[0] = qx; vec[1] = qy;
164  vec[2] = qz; vec[3] = qw;
165  }
166  void identity()
167  {
168  vec[0] = vec[1] = vec[2] = 0.0f;
169  vec[3] = 1.0f;
170  }
171  void conjugate()
172  {
173  vec[0] = -vec[0];
174  vec[1] = -vec[1];
175  vec[2] = -vec[2];
176  }
177  void negate()
178  {
179  vec[0] = -vec[0];
180  vec[1] = -vec[1];
181  vec[2] = -vec[2];
182  vec[3] = -vec[3];
183  }
184  T normal() const
185  {
186  return vec[0] * vec[0] +
187  vec[1] * vec[1] +
188  vec[2] * vec[2] +
189  vec[3] * vec[3];
190  }
191  void normalize()
192  {
193  T dn = normal();
194  if (dn > std::numeric_limits<T>::min()
195  && dn != 1.0)
196  {
197  dn = SYSsqrt(dn);
198  *this /= dn;
199  }
200  }
201  T length() const
202  {
203  return SYSsqrt(normal());
204  }
205  void invert()
206  {
207  T n = normal();
208  if (n > std::numeric_limits<T>::min())
209  {
210  n = 1.0 / n;
211  conjugate();
212  vec[0] *= n;
213  vec[1] *= n;
214  vec[2] *= n;
215  vec[3] *= n;
216  }
217  }
218 
219  UT_QuaternionT<T> exp() const;
220  UT_QuaternionT<T> ln() const;
221  inline UT_QuaternionT<T> log() const
222  {
223  return ln();
224  }
225 
226  // Form the quaternion which takes v1 and rotates it to v2.
227  // v1 and v2 are assumed normalized
228  void updateFromVectors(const UT_Vector3T<T> &v1,
229  const UT_Vector3T<T> &v2);
230 
231  /// Form the quaternion from the rotation component of an
232  /// arbitrary 3x3 matrix.
233  void updateFromArbitraryMatrix(const UT_Matrix3 &);
234  void updateFromArbitraryMatrix(const UT_Matrix3D &);
235 
236  /// Form the quaternion from a rotation matrix
237  /// WARNING: This will produce incorrect results if given
238  /// a non-rotation matrix! Use updateFromArbitraryMatrix
239  /// if you may have a non-rotation matrix.
240  void updateFromRotationMatrix(const UT_Matrix3 &);
241  void updateFromRotationMatrix(const UT_Matrix3D &);
242 
243  // Form the quaternion from an angle/axis
244  void updateFromAngleAxis(T angle,
245  const UT_Vector3T<T> &axis,
246  int normalize=1);
247 
248  void getAngleAxis(T &angle,
249  UT_Vector3T<T> &axis) const;
250 
251  void updateFromLogMap(const UT_Vector3T<T> &v);
252  void getLogMap(UT_Vector3T<T> &v) const;
253 
254  // Form the quaternion from euler rotation angles (given in radians)
255  void updateFromEuler(const UT_Vector3T<T> &rot,
256  const UT_XformOrder &order);
257 
258  // Given the angular velocity omega, compute our derivative into q_prime
259  void computeDerivative(const UT_Vector3T<T> &omega,
260  UT_QuaternionT<T> &q_prime);
261 
262  // Returns the angular velocity required to move from the rotation of
263  // this quaternion to the destination quaternion in a given time.
264  UT_Vector3T<T> computeAngVel(const UT_QuaternionT<T> &dest,
265  T time) const;
266 
267  // Integrates this quaternion by the given angular velocity and time
268  // step. There are two appraoches to doing this. For small
269  // angular velocity/timesteps, one can compute the derivative
270  // implied by the angular velocity, apply linearly, and renormalize.
271  // Alternatively, one can construct the proper quaternion for the given
272  // angular velocity and rotate by that. Which method is controlled
273  // by the accurate flag.
274  void integrate(const UT_Vector3T<T> &angvel,
275  T timestep,
276  bool accurate = true);
277 
278  // Returns the rx/ry/rz euler rotation representation of the quaternion.
279  // The returned rotations are in radians.
280  UT_Vector3T<T> computeRotations(const UT_XformOrder &) const;
281 
282  /// Rotates a vector by this quaternion
283  /// Requires that this is normalized.
285  inline UT_Vector3T<T> rotate(const UT_Vector3T<T> &) const;
286 
287  /// rotates a vector by the inverse of this quaternion.
288  /// Requires that this is normalized.
290  inline UT_Vector3T<T> rotateInverse(const UT_Vector3T<T> &) const;
291 
292  // Multiply this quarternion's "real world" Euler angles by the given
293  // scalar s. That is, if this quaternion is
294  // [ cos(a), n1 sin(a), n2 sin(a), n3 sin(a) ] it is replaced by
295  // [ cos(a*s), n1 sin(a*s), n2 sin(a*s), n3 sin(a*s) ]
296  void multAngle( T s );
297 
298  // Decomposes this quaternion into a twist component along the axis and a swing component
299  // When reverse is false the decomposition is Q = Swing * Twist
300  void swingTwistDecompose(
301  const UT_Vector3T<T> &axis,
302  UT_QuaternionT<T> &swing,
304  const bool reverse = false) const;
305 
306  T &x() { return vec[0]; }
307  T &y() { return vec[1]; }
308  T &z() { return vec[2]; }
309  T &w() { return vec[3]; }
310 
311  T x() const { return vec[0]; }
312  T y() const { return vec[1]; }
313  T z() const { return vec[2]; }
314  T w() const { return vec[3]; }
315 
316  void save(std::ostream &os, int binary=0) const;
317  bool load(UT_IStream &is);
318 
319  /// @{
320  /// Methods to serialize to a JSON stream. The vector is stored as an
321  /// array of 4 reals.
322  bool save(UT_JSONWriter &w) const;
323  bool save(UT_JSONValue &v) const;
324  bool load(UT_JSONParser &p);
325  /// @}
326 
327  const T *data() const { return &vec[0]; }
328  T *data() { return &vec[0]; }
329 
330  T distance2(const UT_QuaternionT<T> &b) const noexcept
331  {
332  return UT::FA::Distance2<T, tuple_size>{}(vec, b.vec);
333  }
334  T distance(const UT_QuaternionT<T> &b) const noexcept
335  {
336  return SYSsqrt(distance2(b));
337  }
338 
339  static int entries() { return tuple_size; }
340 
341  /// Compute a hash
342  unsigned hash() const { return SYSvector_hash(data(), tuple_size); }
343 
344 protected:
345  void initialize(T qx = 0, T qy = 0,
346  T qz = 0, T qw = 0)
347  {
348  vec[0] = qx; vec[1] = qy;
349  vec[2] = qz; vec[3] = qw;
350  }
351 private:
352  // I/O friends:
353  friend std::ostream &operator<<(std::ostream &os, const UT_QuaternionT<T> &v)
354  {
355  v.save(os);
356  return os;
357  }
358  T vec[tuple_size];
359 };
360 
361 template <typename T>
362 UT_API size_t format(char *buf, size_t buf_size, const UT_QuaternionT<T> &q);
363 
364 template <typename T>
365 inline
367  int donormalize)
368 {
369  updateFromAngleAxis(angle, axis, donormalize);
370 }
371 
372 template <typename T>
373 inline bool
375 {
376  return (vec[0] == quat.vec[0] &&
377  vec[1] == quat.vec[1] &&
378  vec[2] == quat.vec[2] &&
379  vec[3] == quat.vec[3]);
380 }
381 
382 template <typename T>
383 inline bool
385 {
386  return !(*this == quat);
387 }
388 
389 template <typename T>
390 inline bool
392 {
393  // Two quaternions are equal if all values are equal, or if all values
394  // are equal magnitude but opposite sign. Both sets of values represent
395  // the same overall rotation.
396  return ((SYSisEqual(vec[0], quat.vec[0], tol) &&
397  SYSisEqual(vec[1], quat.vec[1], tol) &&
398  SYSisEqual(vec[2], quat.vec[2], tol) &&
399  SYSisEqual(vec[3], quat.vec[3], tol)) ||
400  (SYSisEqual(-vec[0], quat.vec[0], tol) &&
401  SYSisEqual(-vec[1], quat.vec[1], tol) &&
402  SYSisEqual(-vec[2], quat.vec[2], tol) &&
403  SYSisEqual(-vec[3], quat.vec[3], tol)));
404 }
405 
406 template <typename T>
407 inline UT_QuaternionT<T>
409 {
410  UT_QuaternionT<T> product = q1;
411 
412  product *= q2;
413 
414  return UT_QuaternionT<T>(product);
415 }
416 
417 template <typename T>
418 inline UT_QuaternionT<T>
420 {
421  return UT_QuaternionT<T>(q1.x() + q2.x(),
422  q1.y() + q2.y(),
423  q1.z() + q2.z(),
424  q1.w() + q2.w());
425 }
426 
427 template <typename T>
428 inline UT_QuaternionT<T> &
430 {
431  vec[0] += quat.vec[0];
432  vec[1] += quat.vec[1];
433  vec[2] += quat.vec[2];
434  vec[3] += quat.vec[3];
435 
436  return *this;
437 }
438 
439 template <typename T>
440 inline UT_QuaternionT<T>
442 {
443  return UT_QuaternionT<T>(q1.x() - q2.x(),
444  q1.y() - q2.y(),
445  q1.z() - q2.z(),
446  q1.w() - q2.w());
447 }
448 
449 template <typename T>
450 inline UT_QuaternionT<T>
452 {
453  return UT_QuaternionT<T>(-q.x(),
454  -q.y(),
455  -q.z(),
456  -q.w());
457 }
458 
459 template <typename T>
460 inline UT_QuaternionT<T>
461 operator*(const UT_QuaternionT<T> &q, T scalar)
462 {
463  return UT_QuaternionT<T>(q.x() * scalar,
464  q.y() * scalar,
465  q.z() * scalar,
466  q.w() * scalar);
467 }
468 
469 template <typename T>
470 inline UT_QuaternionT<T>
471 operator*(T scalar, const UT_QuaternionT<T> &q)
472 {
473  return UT_QuaternionT<T>(q.x() * scalar,
474  q.y() * scalar,
475  q.z() * scalar,
476  q.w() * scalar);
477 }
478 
479 template <typename T>
480 inline UT_QuaternionT<T> &
482 {
483  UT_Vector3T<T> v1(vec[0], vec[1], vec[2]);
484  UT_Vector3T<T> v2(q.vec[0], q.vec[1], q.vec[2]);
486  T s1 = vec[3], s2 = q.vec[3];
487 
488  vec[3] = s1*s2 - v1.dot(v2);
489  v3 = s1*v2 + s2*v1 + cross(v1, v2);
490  vec[0] = v3[0];
491  vec[1] = v3[1];
492  vec[2] = v3[2];
493 
494  return *this;
495 }
496 
497 template <typename T>
498 inline UT_QuaternionT<T> &
500 {
501  vec[0] *= scalar;
502  vec[1] *= scalar;
503  vec[2] *= scalar;
504  vec[3] *= scalar;
505 
506  return *this;
507 }
508 
509 template <typename T>
510 inline UT_QuaternionT<T>
512 {
513  UT_QuaternionT<T> a1 = a;
514  UT_QuaternionT<T> b1 = b;
515 
516  b1.invert();
517  a1 *= b1;
518 
519  return UT_QuaternionT<T>(a1);
520 }
521 
522 template <typename T>
523 inline UT_QuaternionT<T>
524 operator/(const UT_QuaternionT<T> &q, T scalar)
525 {
526  T d = 1.0/scalar;
527  return UT_QuaternionT<T>(q.x()*d, q.y()*d, q.z()*d, q.w()*d);
528 }
529 
530 template <typename T>
531 inline UT_QuaternionT<T> &
533 {
534  UT_QuaternionT<T> q = quat;
535 
536  q.invert();
537  operator*=(q);
538 
539  return *this;
540 }
541 
542 template <typename T>
543 inline UT_QuaternionT<T> &
545 {
546  T d = 1.0F/scalar;
547 
548  vec[0] *= d;
549  vec[1] *= d;
550  vec[2] *= d;
551  vec[3] *= d;
552 
553  return *this;
554 }
555 
556 template <typename T>
557 inline UT_Vector3T<T>
559 {
560  UT_QuaternionT<T> q = (*this) *
561  UT_QuaternionT<T>(v.x(), v.y(), v.z(), 0.0f) *
562  UT_QuaternionT<T>(-vec[0], -vec[1], -vec[2], vec[3]);
563  return UT_Vector3T<T>(q.x(), q.y(), q.z());
564 }
565 
566 template <typename T>
567 inline UT_Vector3T<T>
569 {
570  UT_QuaternionT<T> q = UT_QuaternionT<T>(-vec[0], -vec[1], -vec[2], vec[3]) *
571  UT_QuaternionT<T>(v.x(), v.y(), v.z(), 0.0f) *
572  (*this);
573  return UT_Vector3T<T>(q.x(), q.y(), q.z());
574 }
575 
576 template <typename T>
577 inline T
578 dot( const UT_QuaternionT<T> &q1, const UT_QuaternionT<T> &q2 )
579 {
580  return q1.x()*q2.x() + q1.y()*q2.y() + q1.z()*q2.z() + q1.w()*q2.w();
581 }
582 
583 template <typename T>
584 inline size_t
586 {
587  return val.hash();
588 }
589 
595 
596 template< typename T, exint D >
597 class UT_FixedVector;
598 
599 template<typename T>
601 {
603  typedef T DataType;
604  static const exint TupleSize = 4;
605  static const bool isVectorType = true;
606 };
607 
608 // UT_QuaternionTFromFixed<T> is a function object that
609 // creates a UT_QuaternionT<T> from a fixed array-like type TS,
610 // examples of which include T[4], UT_FixedVector<T,4> and UT_FixedArray<T,4> (AKA std::array<T,4>)
611 template <typename T>
613 {
614  template< typename TS >
615  constexpr SYS_FORCE_INLINE UT_QuaternionT<T> operator()(const TS& as) const noexcept
616  {
617  SYS_STATIC_ASSERT( SYS_IsFixedArrayOf_v< TS, T, 4 > );
618 
619  return UT_QuaternionT<T>{as[0], as[1], as[2], as[3]};
620  }
621 };
622 
623 // Convert a fixed array-like type TS into a UT_QuaternionT< T >.
624 // This allows conversion to UT_QuaternionT without fixing T.
625 // Instead, the element type of TS determines the type T.
626 template< typename TS >
628 UTmakeQuaternionT( const TS& as ) noexcept
629 {
631 
632  return UT_QuaternionTFromFixed< T >{}( as );
633 }
634 
635 // UT_FromFixed<V> creates a V from a flat, fixed array-like representation
636 
637 // Primary
638 template <typename V >
639 struct UT_FromFixed;
640 
641 // Partial specialization for UT_QuaternionT
642 template <typename T>
644 
645 ///////////////////////////////////////////////////////////////////////////////
646 //
647 // Implementations
648 //
649 
650 template <typename T>
651 inline UT_QuaternionT<T>
653 {
654  return UT_QuaternionT<T>( SYSlerp(q1.x(), q2.x(), t)
655  , SYSlerp(q1.y(), q2.y(), t)
656  , SYSlerp(q1.z(), q2.z(), t)
657  , SYSlerp(q1.w(), q2.w(), t)
658  );
659 }
660 
661 #endif
T & operator[](int idx)
Mat3< typename promote< S, T >::type > operator*(S scalar, const Mat3< T > &m)
Multiply each element of the given matrix by scalar and return the result.
Definition: Mat3.h:561
T length() const
GLenum GLuint GLenum GLsizei const GLchar * buf
Definition: glcorearb.h:2540
constexpr SYS_FORCE_INLINE T dot(const UT_Vector3T &b) const noexcept
Definition: UT_Vector3.h:529
UT_QuaternionT< T > & operator/=(const UT_QuaternionT< T > &quat)
UT_QuaternionT(const UT_Vector3T< T > &rot, const UT_XformOrder &order)
Definition: UT_Quaternion.h:82
#define SYS_STATIC_ASSERT(expr)
OIIO_FORCEINLINE const vint4 & operator/=(vint4 &a, const vint4 &b)
Definition: simd.h:4587
UT_QuaternionT< fpreal16 > UT_QuaternionH
UT_QuaternionT< T > & operator=(const UT_QuaternionT< S > &v)
Definition: UT_Quaternion.h:99
T z() const
constexpr SYS_FORCE_INLINE UT_QuaternionT< T > operator()(const TS &as) const noexcept
SIM_API const UT_StringHolder angle
UT_QuaternionT< fpreal > UT_QuaternionR
GLboolean * data
Definition: glcorearb.h:131
GT_API const UT_StringHolder time
const GLdouble * v
Definition: glcorearb.h:837
Transformation order of scales, rotates, and translates.
Definition: UT_XformOrder.h:23
Mat3< typename promote< T0, T1 >::type > operator+(const Mat3< T0 > &m0, const Mat3< T1 > &m1)
Add corresponding elements of m0 and m1 and return the result.
Definition: Mat3.h:577
const GLuint GLenum const void * binary
Definition: glcorearb.h:1924
GA_API const UT_StringHolder rot
T & operator()(int idx)
typename SYS_FixedArrayElement< T >::type SYS_FixedArrayElement_t
GA_API const UT_StringHolder twist
fpreal64 distance2(const UT_VectorD &v1, const UT_VectorD &v2)
Distance squared (L2) aka quadrance.
Definition: UT_Vector.h:399
void assign(T qx, T qy, T qz, T qw)
constexpr SYS_FORCE_INLINE T & z() noexcept
Definition: UT_Vector3.h:667
int64 exint
Definition: SYS_Types.h:125
GLboolean GLboolean GLboolean GLboolean a
Definition: glcorearb.h:1222
GLdouble s
Definition: glad.h:3009
PUGI__FN void reverse(I begin, I end)
Definition: pugixml.cpp:7458
JSON reader class which handles parsing of JSON or bJSON files.
Definition: UT_JSONParser.h:87
#define UT_API
Definition: UT_API.h:14
ImageBuf OIIO_API min(Image_or_Const A, Image_or_Const B, ROI roi={}, int nthreads=0)
Class which writes ASCII or binary JSON streams.
Definition: UT_JSONWriter.h:37
static const exint TupleSize
GLfloat GLfloat GLfloat v2
Definition: glcorearb.h:818
GLdouble GLdouble GLdouble q
Definition: glad.h:2445
3D Vector class.
GLfloat GLfloat GLfloat GLfloat v3
Definition: glcorearb.h:819
4D Vector class.
Definition: UT_Vector4.h:174
static int entries()
float fpreal32
Definition: SYS_Types.h:200
size_t hash_value(const UT_QuaternionT< T > &val)
UT_QuaternionT< T > operator/(const UT_QuaternionT< T > &a, const UT_QuaternionT< T > &b)
double fpreal64
Definition: SYS_Types.h:201
bool operator==(const BaseDimensions< T > &a, const BaseDimensions< Y > &b)
Definition: Dimensions.h:137
UT_API size_t format(char *buf, size_t buf_size, const UT_QuaternionT< T > &q)
GLdouble n
Definition: glcorearb.h:2008
GLfloat f
Definition: glcorearb.h:1926
UT_QuaternionT< fpreal32 > UT_QuaternionF
Vec3< T > & operator*=(Vec3< T > &_v, const Mat3< MT > &_m)
Multiply _v by _m and replace _v with the resulting vector.
Definition: Mat3.h:633
UT_QuaternionT< T > ThisType
Definition: UT_Quaternion.h:88
SYS_NO_DISCARD_RESULT UT_Vector3T< T > rotateInverse(const UT_Vector3T< T > &) const
Mat3< typename promote< T0, T1 >::type > operator-(const Mat3< T0 > &m0, const Mat3< T1 > &m1)
Subtract corresponding elements of m0 and m1 and return the result.
Definition: Mat3.h:587
OIIO_FORCEINLINE const vint4 & operator+=(vint4 &a, const vint4 &b)
Definition: simd.h:4512
T x() const
UT_QuaternionT< fpreal64 > UT_QuaternionD
UT_QuaternionT(T qx=0, T qy=0, T qz=0, T qw=0)
Definition: UT_Quaternion.h:58
static const bool isVectorType
#define SYS_FORCE_INLINE
Definition: SYS_Inline.h:45
GLdouble GLdouble GLint GLint order
Definition: glad.h:2676
GLenum target
Definition: glcorearb.h:1667
UT_QuaternionT< T > & operator+=(const UT_QuaternionT< T > &quat)
#define SYS_NO_DISCARD_RESULT
Definition: SYS_Compiler.h:93
T operator()(int idx) const
const T * data() const
GLboolean GLboolean GLboolean b
Definition: glcorearb.h:1222
UT_QuaternionT(const UT_Vector4T< T > &v)
Definition: UT_Quaternion.h:74
void lerp(const UT_QuaternionT< T > &src, const UT_QuaternionT< T > &dst, T t)
Do component-wise lerp between this src (t=0) and dst (t=1).
T dot(const UT_QuaternionT< T > &q1, const UT_QuaternionT< T > &q2)
ImageBuf OIIO_API rotate(const ImageBuf &src, float angle, string_view filtername=string_view(), float filterwidth=0.0f, bool recompute_roi=false, ROI roi={}, int nthreads=0)
IMATH_HOSTDEVICE const Vec2< S > & operator*=(Vec2< S > &v, const Matrix22< T > &m) IMATH_NOEXCEPT
Vector-matrix multiplication: v *= m.
Definition: ImathMatrix.h:4660
char size_t buf_size
Definition: SYS_String.h:466
GLdouble t
Definition: glad.h:2397
UT_QuaternionT< T > SYSlerp(const UT_QuaternionT< T > &q1, const UT_QuaternionT< T > &q2, T t)
Perform component-wise SYSlerp of two quaternions.
UT_QuaternionT< T > & operator*=(const UT_QuaternionT< T > &q)
bool isEqual(const UT_QuaternionT< T > &quat, T tol=T(SYS_FTOLERANCE)) const
class UT_API UT_QuaternionT
Definition: UT_Quaternion.h:42
UT_QuaternionT< T > log() const
GLenum GLenum dst
Definition: glcorearb.h:1793
Quaternion class.
Definition: GEO_Detail.h:49
UT_QuaternionT(const fpreal64 v[tuple_size])
Definition: UT_Quaternion.h:69
T y() const
UT_QuaternionT< fpreal32 > UT_Quaternion
bool operator!=(const UT_QuaternionT< T > &quat) const
T distance2(const UT_QuaternionT< T > &b) const noexcept
T w() const
LeafData & operator=(const LeafData &)=delete
T distance(const UT_QuaternionT< T > &b) const noexcept
constexpr UT_QuaternionT< SYS_FixedArrayElement_t< TS > > UTmakeQuaternionT(const TS &as) noexcept
GLfloat GLfloat v1
Definition: glcorearb.h:817
GLuint GLfloat * val
Definition: glcorearb.h:1608
T operator[](int idx) const
FMT_CONSTEXPR basic_fp< F > normalize(basic_fp< F > value)
Definition: format.h:1701
Class to store JSON objects as C++ objects.
Definition: UT_JSONValue.h:99
UT_QuaternionT(const fpreal32 v[tuple_size])
Definition: UT_Quaternion.h:64
void lerp(const UT_QuaternionT< T > &target, T t)
Do component-wise lerp between this quat (t=0) and the target (t=1).
#define SYS_FTOLERANCE
Definition: SYS_Types.h:208
GLubyte GLubyte GLubyte GLubyte w
Definition: glcorearb.h:857
bool operator!=(const BaseDimensions< T > &a, const BaseDimensions< Y > &b)
Definition: Dimensions.h:165
T normal() const
bool operator==(const UT_QuaternionT< T > &quat) const
SYS_NO_DISCARD_RESULT UT_Vector3T< T > rotate(const UT_Vector3T< T > &) const
void initialize(T qx=0, T qy=0, T qz=0, T qw=0)
constexpr SYS_FORCE_INLINE T & y() noexcept
Definition: UT_Vector3.h:665
bool SYSisEqual(const UT_Vector2T< T > &a, const UT_Vector2T< T > &b, S tol=SYS_FTOLERANCE)
Componentwise equality.
Definition: UT_Vector2.h:674
unsigned hash() const
Compute a hash.
SIM_DerVector3 cross(const SIM_DerVector3 &lhs, const SIM_DerVector3 &rhs)
GLenum src
Definition: glcorearb.h:1793
constexpr SYS_FORCE_INLINE T & x() noexcept
Definition: UT_Vector3.h:663