Houdini 16.5 Nodes Geometry nodes

Merge geometry node

Merges geometry from its inputs.

This node merges together the geometry from its inputs into a single stream of geometry, which you can then send through other nodes. If you need to continue distinguishing different parts of the merged geometry later, try using the Group node to put the input geometries into groups before merging them.

You can merge together a maximum of 9999 inputs.

Note

Bypassing this node causes it to only export the first input. It will not compute the merged objects.

Examples

MergeAttributes Example for Merge geometry node

The Merge SOP applies all incoming attributes to all input geometry. Each input geometry may have its own set of attributes.

Three spheres are wired into a Merge SOP. The first has no attributes applied. The second has a color attribute (Cd[3]) applied by a Point SOP. The third has a normal attribute (N[3]) applied by another Point SOP.

The Merge SOP does NOT know how to build attributes, but can apply them. As a result, all applied attribute values are set to zero.

This is why the first two spheres display and render black. They have normal attributes applied, but their values are set to zero.

In addition, the first and last spheres have a color attribute applied, but their values are set to zero.

It is better to set attributes explicitly, instead of relying on the Merge SOP to do so.

The following examples include this node.

BlendPoseBasic Example for BlendPose channel node

This is a simple example of using the BlendPose CHOP to deform some geometry using random tracker point positions.

CopyAnimation Example for Copy channel node

This file demonstrates how the Copy CHOP can be used to copy channels and apply them to geometry.

CountImpacts Example for Count channel node

This example demonstrates how to count impacts from a DOPs simulation using the Count CHOP. Then, using the values from the Count CHOP, we generate copies of a teapot.

DelayPosition Example for Delay channel node

This example demonstrates how to take the position of an object, and delay the animation using the Delay CHOP.

DynamicLights Example for Dynamics channel node

This example demonstrates how to use the Dynamics CHOP to extract impact data from a DOPs simulation, and then modify the data to control lights in the scene.

ExpressionLine Example for Expression channel node

This example demonstrates how to use an expression in an Expression CHOP.

GeometryMethods Example for Geometry channel node

This example demonstrates using the different methods of the Geometry CHOP - Animated and Static.

HoldLight Example for Hold channel node

This example uses the Hold CHOP in conjunction with the Dynamics CHOP to hold a light at the position of an impact from a DOPs simulation until a new impact occurs.

Lookup Example for Lookup channel node

This example demonstrates how to use the Lookup CHOP to play animation based on an event, or trigger.

NoiseTransform Example for Noise channel node

This example demonstrates using the Noise CHOP to generate animation and apply it to geometry.

ObjectBasic Example for Object channel node

This file demonstrates the Object CHOP.

The CHOP is used to bring in the channel information from a Object.

This data can then be manipulated within CHOPs and exported back into the Object, or even a different Operator.

AnimationSequence Example for Sequence channel node

This example demonstrates how to take the animation from three separate objects, and sequence their animation into one animation on a fourth object.

WarpSpeed Example for Warp channel node

This example demonstrates how to retime a particle simulation using the Warp CHOP.

ApplyRelationship Example for Apply Relationship dynamics node

This example shows how you can use the Apply Relationship DOP to add pin constraints to wire objects.

BridgeCollapse Example for Apply Relationship dynamics node

This example shows how to use the Apply Relationship DOP to propagate constraints automatically and create an RBD simulation of a collapsing bridge.

MultipleSphereClothCollisions Example for Cloth Object dynamics node

This example shows a pieces of cloth with different properties colliding with spheres. By adjusting the stiffness, bend, and surfacemassdensity values, we can give the cloth a variety of different behaviours.

ControlledGlueBreaking Example for Constraint Network dynamics node

This example shows how to gradually remove glue bonds from a constraint network and control the crumbling of a building.

AutoFracturing Example for Copy Objects dynamics node

This example shows how to use the Copy Object DOP, in conjunction with a Multi Solver, to automatically break an RBD object in half whenever it impacts another object.

Formation Crowd Example Example for Crowd Solver dynamics node

Crowd example showing a changing formation setup

The setup creates an army of agents. There are two paths created. Middle part of the army starts moving and then splits into two formations. One goes to the left, the other groups keeps marching forward and slowly changes formation to a wedge shape.

To keep the agents in formation a custom geo shape is used. It’s points are used as goals for indiviudal agents. Using blendshapes the shape can change allowing for different formation changes. Dive inside the crowdsource object to see the construction.

Note

The animation clips need to be baked out before playing the scene. This should happen automatically if example is created from Crowds shelf. Otherwise save scene file to a location of your choice and click Render on '/obj/bake_cycles' ropnet to write out the files. The default path for the files is ${HIP}/agents.

Street Crowd Example Example for Crowd Solver dynamics node

Crowd example showing a street setup with two agent groups

The setup creates two groups of agents. The yellow agents are zombies which follow a path of the street. The blue agents are living pedestrians that wander around until they come into proximity of the zombies and then they swtich into a running state.

Triggers to change agent states are setup in the crowd_sim dopnet. The zombies group uses proximity to the stoplights and the color of the light to transition into a standing state when lights are red. The living group transition into a running state when they get close to the zombie agents.

Note

The animation clips need to be baked out before playing the scene. This should happen automatically if example is created from Crowds shelf. Otherwise save scene file to a location of your choice and click Render on '/obj/bake_cycles' ropnet to write out the files. The default path for the files is ${HIP}/agents.

fieldforce Example for Field Force dynamics node

This example demonstrates the use of the Field Force DOP. It shows how to use a particle system to blow around smoke.

DensityViscosity Example for FLIP Solver dynamics node

This example demonstrates two fluids with different densities and viscosities interacting with a solid object.

FlipColorMix Example for FLIP Solver dynamics node

This example demonstrates the use of the Flip Solver to mix the colors of a red fluid with a blue fluid to form a purple fluid.

FlipColumn Example for FLIP Solver dynamics node

This example demonstrates how a mixture of fluid colours can have their colour changed by a collision with a static object.

PaintedGrog Example for Fluid Object dynamics node

This example creates a torus of paint which is dropped on the Grog character. The Grog character is then colored according to the paint that hits him. This also shows how to have additional color information tied to a fluid simulation.

EqualizeLiquid Example for Gas Equalize Volume dynamics node

This example demonstrates how the Gas Equalize Volume dop can be used to preserve the volume in a fluid simulation.

TeapotUnderTension Example for Gas Surface Tension dynamics node

This example creates a teapot shaped blob of liquid. It then uses surface tension forces to smooth the blob into a sphere.

UpresRetime Example for Gas Up Res dynamics node

This example demonstrates how the Up Res Solver can now be used to re-time an existing simulation. The benefit of this is that one can simply change the speed without affecting the look of the sim. On the up-res solver there is a tab called Time. The Time tab offers various controls to change the simulation’s speed.

SimpleMagnets Example for Magnet Force dynamics node

This example demonstrates how the magnetforce DOP can be used with a pair of metaballs (one positive and one negative) to attract/repulse an RBD sphere.

FluidGlass Example for Particle Fluid Solver dynamics node

This example demonstrates how to get a smooth fluid stream to pour into a glass.

AdvectByVolume Example for POP Advect by Volumes dynamics node

This example demonstrates how to use POP Advect by Volumes to advect particles using the velocity from a smoke simulation.

BaconDrop Example for POP Grains dynamics node

This example demonstrates dropping slices of bacon onto a torus. It shows how to extract a 2d object from a texture map and how to repeatedly add the same grain-sheet object to DOPs.

BillowyTurbine Example for Pyro Solver dynamics node

This example uses the Pyro Solver and a Smoke Object which emits billowy smoke up through a turbine (an RBD Object). The blades of the turbine are created procedurally using Copy, Circle, and Align SOPs.

RagdollExample Example for Cone Twist Constraint dynamics node

This sample creates a simple ragdoll using the cone twist constraint between pieces of the ragdoll.

ShatterDebris Example for RBD Fractured Object dynamics node

This example demonstrates the how the shatter, RBD Fractured Object, and Debris shelf tools can be used to create debris emanating from fractured pieces of geometry.

First, the Shatter tool (from the Model tool shelf) is used on the glass to define the fractures. Then the RBD Fracture tool is used on the glass to create RBD objects out of the fractured pieces. Then the Debris tool is used on the RBD fractured objects to create debris.

StackedBricks Example for RBD Fractured Object dynamics node

This example shows how to create a large number of RBD objects from a single SOP. It also shows how a velocity point attribute can be used to set the initial motion for the objects.

BreakingRock

This is an example of how to use the RBD Glue Object node to create an RBD object that automatically breaks apart on collision. It also demonstrates one technique for breaking a model into pieces appropriate for this sort of simulation.

EmittingObjects Example for RBD Packed Object dynamics node

This example shows how to use a SOP Solver to create new RBD objects and add them to an existing RBD Packed Object.

Chainlinks Example for RBD Pin Constraint dynamics node

In this chain simulation, the individual chain links react to one another in an RBD sim.

ReferenceFrameForce Example for Reference Frame Force dynamics node

An RBD vase filled with water performs the water simulation in the vase’s reference frame.

Open CL smoke Example for Smoke Object dynamics node

Demonstrates a simple Open CL accelerated smoke sim that can be used as a starting point for building optimized GPU accelerated smoke sims. See the Use OpenCL parameter on the Smoke solver.

For fastest speeds, the system needs to minimize copying to and from the video card. This example demonstrates several methods for minimizing copying.

  • Turns off DOPs caching. Caching requires copying all the fields every frame. Useful if you want to scrub and inspect random fields, not if you want maximum speed.

  • Only imports density to SOPs. This means copying only one field from the GPU to CPU each frame.

  • Saves to disk in background. This gives you the best throughput.

  • Uses a plain Smoke solver.

Displaying the simulated output in the viewport requires a GPU → CPU → GPU round trip, but this is required in general to support simulating on a card other than your display card.

rbdsmokesource Example for Smoke Object dynamics node

A ghostly tetrahedron bounces around a box, its presense shown by its continuous emission of smoke.

FractureExamples Example for Voronoi Fracture Solver dynamics node

This example actually includes eight examples of ways that you can use voronoi fracturing in Houdini. In particular, it shows how you can use the Voronoi Fracture Solver and the Voronoi Fracture Configure Object nodes in your fracture simulations. Turn on the display flags for these examples one at a time to play the animation and dive down into each example to examine the setup.

CurveAdvection Example for Wire Solver dynamics node

This example demonstrates how to advect curves based on a pyro simulation. An Attribute Wrangle SOP is used to sample the velocity from the volume and apply it to a wire object.

CrowdPov Example for Agent Cam object node

This example demonstrates how the agent cam can be assigned to a crowd agent to give you the point of view from someone in a crowd simulation.

TransparentShadows Example for Light object node

This example shows how to configure transparent shadows with deep shadow maps. The scene includes a transparent grid which casts a shadow on the scene. The renderer used is micropolygon rendering.

JiggleMuscle

This example demonstrates how to make a muscle jiggle in object space using a two point muscle.

AmbientOcclusion Example for Mantra render node

Ambient occlusion is a fast technique for producing soft, diffuse lighting in open spaces by using ray tracing. It is computed by determining how much of the hemisphere above a point is blocked by other surfaces in the scene, and producing a darker lighting value when the point is heavily occluded. This technique can be useful when you need a GI-like effect without paying the price for full global illumination.

With this particular example, an Ambient Occlusion light and some geometry is provided in the form of a Digital Asset. An Environment Light was used, and it’s parameters were promoted for easy access.

Decreasing the sample count allows you to improve render time at the expense of some additional noise in the render. The following render uses the same shader as the image above but decreases the samples from the default of 256 to 16. This value is set on the Sampling Quality under the Render Options tab of the Light.

Environment Maps

If you have a smooth environment map, it is possible to replace the global background color (white) with the value from an environment map. You can also enable the Sky Environment Map under the Sky Environment Map tab.

Volume Rendering - File Referenced Smoke Example for Mantra render node

Volume rendering is a rendering approach that allows high-quality, integrated rendering of volumetric effects like smoke, clouds, spray, and fire.

Volume rendering is suitable for rendering many types of volumetric effects. Scenes that are particularly suited to rendering with mantra volumes include:

  • Detailed "hero" clouds, smoke, or fire

  • Fields of instanced clouds, smoke, or fire

Scenes where volume rendering may not be quite so applicable include:

  • Scenes with a single uniform fog

In this particular example, a bgeo file (1 frame only) was exported from a fluid simulation of smoke and is now referenced using the File SOP. A material using VEX Volume Cloud is assigned to this volumetric data at the top level of the Volume Object. To see this scene in shaded mode, ensure that HOUDINI_OGL_ENABLE_SHADERS is set to 1 in the environment variables.

Controlling Quality/Performance

Volume rendering uses ray marching to step through volumes. Ray marching generates shading points in the volume by uniformly stepping along rays for each pixel in the image. There are two ways to change the quality and speed of the volume ray marching:

  1. The samples parameter on the Sampling tab of the mantra ROP. More pixel samples will produce more ray marches within that pixel leading to higher quality. Using more pixel samples will also improve antialiasing and motion blur quality for the volume.

  2. The volumesteprate parameter on the Sampling tab of the mantra ROP. A larger volume step rate will produce more samples in the volume interior, improving quality and decreasing performance. A separate shadow step rate can be used for shadows.

Which parameter you should change will depend on your quality requirements for pixel antialiasing. In general, it is better to decrease the volume step size rather than increase the pixel samples because a smaller volume step size will lead to more accurate renders.

This render uses 2×2 samples and volume step rate of 1. Notice the detail in the shadows.

This render uses the same scene with 4×4 samples and a volume step rate of 0.25. The fine detail in the shadow has been lost and the volume is somewhat more transparent. The quality level is approximately the same.

Down Hill Lava Flow Example for Material shader node

In this file we create a downhill lava flow with crust gathering and hardening at the base of the slope. All of the animation is achieved through the shader itself, and all of the geometry is completely static.

Note

Most of the parameters for the lava material are overridden by point attributes created in the surface nodes.

FirePit Example for Material shader node

Note

No geometry is animated in this file. All animation is achieved by animating the textures

Flames are grids so that UV textures can easily be applied, they are then warped around a metaball using a magnet SOP. The flames are then assigned to either a yellow or blue Flames texture. The Flames' opacity mask wrap is set to Decal to prevent the texture from repeating and showing a single pixel ring at the top of the flame geometry. I'm also using a mask file named flameOpacMap.jpg to enhance the flames' shape at the top. The noise offset has been animated over $T with an greater emphasis on the Y axis so that the flames look like they are rising. This is the same reason the Noise jitter is larger for the Y axis as well.

The coals are spheres that have been copy stamped onto a deformed grid. Using Attribute Create surface nodes I am able to override and copy stamp the lava texture’s parameters at the SOP level so that local variables, such as $BBY, can be used to animate the texture. This way the texture’s crust and its crust values can be used only to form the tops of the coals. This reserves the lava aspect of the texture to be used on the bottoms of the coals. The lava intensity (Kd attribute) is then stamped and animated to create the look of embers on the bottom of coals glowing.

AddItUp Example for Add geometry node

This network demonstrates the many uses of the Add SOP to build and manipulate geometry:

  • It is used to create points in space which can then be used to create polygons using designated patterns. These polygons can be open or closed. Futhermore, each point can be animated through expressions or keyframes.

  • It is used to both create points and grab points from other primitives. These points may be used in polygon creation.

  • The Add SOP may be utilized to create a polygon using points extracted from another polygonal object. A Group SOP allows for the creation of the point group that will be referenced by the Add SOP.

  • The Add SOP is used to create a polygon from a group of animated Null objects. An Object Merge SOP references the null points in SOPs which are then fed into an Add SOP for polygon generation. A Fit SOP, in turn, is used to create an interpolated spline from the referenced null points. The result is an animted spline.

  • The Add SOP is used to generate points without creating any primitives. Also, points from other objects can be extracted through the Add SOP.

  • Finally the Add SOP can additionally be used to procedurally create rows and columns.

AlignTube Example for Align geometry node

This example demonstrates how the UV information on surfaces, NURBS in this example, are used by the Align SOP to orient one object to another’s surface.

UV reference parameters in the Align SOP can be animated as shown in the align_tube example.

Animating UV parameters leads to the translation and rotation of the aligned geometries along one another’s surface in various ways.

BlendAttr Example for Attribute Composite geometry node

This example demonstrates how to blend attributes using the Attribute Composite SOP.

MountainSplash Example for Attribute Transfer geometry node

This example demonstrates how to transfer attributes from the points on one geometry to the points on another, using the AttribTransfer SOP.

A line is crept along the surface of a deformed grid. A section of the grid is painted red using the Paint SOP. Using the AttribTransfer SOP, the animated line inherits the attributes from the points on the grid.

Particles are then birthed along the line based on the color attribute (Cd). As the inherited color nears red, particles are born. The particles also use the velocity inherited by the points on the line.

Please press play to see the animation.

NormalsAttribTransfer Example for Attribute Transfer geometry node

The AttribTransfer SOP may be used to transfer various point attributes from a source geometry to a target. In this case, the normal attributes, N[3], of one grid are transferred to another grid.

TransferColor Example for Attribute Transfer geometry node

The Attribute Transfer SOP can be used to transfer color attributes from one geometry to another. The effective field of transfer can be controlled through the various parameters in the Attribute Transfer SOP.

FluffyTorus Example for Bake Volume geometry node

This example shows how to setup the Bake Volume SOP to compute the lightfield created by the shadowing of a fog volume. It then exports the fields properly to be rendered in Mantra by a constant volume shader.

BoxSpring Example for Box geometry node

The Box SOP is used for more than just creating boxes. It can also envelop existing geometry for specific purposes.

The Box SOP can either create a simple six-sided polygon box, calculate the bounding box size for geometry, or be used in conjunction with the Lattice SOP.

There are two objects within the box.hip file that are examples of this:

  • animated_bounding_box

    The animated_bounding_box object shows how you can envelope an object and surround it with a simple box, even if it is animated. This can be useful when displaying complicated geometry, in which case you would put the display flag on the box object and the render flag on the complicated geometry.

  • box_spring_lattice

    This is an example, a Lattice SOP used in conjunction with the Box SOP. The Box SOP is used to envelope some geometry, in this case a sphere. Divisions is checked to create the proper geometry by referencing the number of divisions in the Lattice SOP.

The top points of the box are grouped by a Group SOP. The Spring SOP uses these points as the Fixed Points from which to create the deformation.

Using the Box SOP in this way allows you to change the incoming geometry (the basic_sphere in this case) and have the box and lattice automatically re-size for you.

CapTubeExamples Example for Cap geometry node

This example contains different variations on how to cap a tube.

There are three geometry types that are able to be capped – NURBS, mesh, and Bezier.

Each geometry type contains examples of different cap types – faceted, shared, rounded, and tangential.

For a better description of cap types, please open the help card in the Cap SOP.

CarveExtractCurve Example for Carve geometry node

This network is a demonstration of how the Carve SOP can be used to extract various elements of the surface geometry.

Depending on the type of geometry, the Carve SOP may be used to extract points from polygonal objects or curves from NURBS surfaces.

Furthermore, the Carve SOP uses the surface U and V information to extract the various elements, and by animating the U and V values we can create various effects as the points and curves move on the geometry surface.

CopySpikes Example for Carve geometry node

This network contains an example of how the Carve SOP can extract 3D Isoparametric Curves from a surface, and how those curves may be used as a copy template.

The Carve SOP can be used to slice a primitive, cut it into multiple sections, or extract points or cross-sections from it.

In this example, the Extract option has been used to Extract 3D Isoparametric Curve(s). A series of disk-like shapes are created as the Carve SOP extracts curves from points around the surface with the same V Directional value.

It then uses the points along those curves as a template on which to copy sourced geometry.

CircleExamples Example for Circle geometry node

This is an example of the different geometry types and arc types a circle can have.

Geometry types include primitives, polygons, NURBS, and Beziers.

Arc types include closed circle, open arc, closed arc, and sliced arc.

The arc examples are animated, so playback the animation to see the arcs opening.

ClayBasic Example for Clay geometry node

This demonstration contains four examples of how a Clay SOP is used. The points have been animated to better visualize this.

Matrix - Point transformation is given by a matrix.

Vector - Point is translated along a vector.

Point - Point is moved to an absolute XYZ position in object space.

Primitive - Point snaps to the (U,V) of the primitive in the 2nd input of to a (U,V) on itself if no 2nd input is present.

ClipParticle Example for Clip geometry node

This is a very basic example of how the Clip SOP can be used to control particle flow by cutting it with an infinite plane.

Play animation to see the effects.

ClipVariations Example for Clip geometry node

This network compares the various ways in which the Clip SOP can be used with geometry. Depending on what parts of the clipped geometry we want to keep, different effects are achievable.

The Clip SOP can also be used as a grouping tool by specify group boundaries with clip planes.

Clip planes can be animated. Play the animation to view the results.

CaptureDeform Example for Cloth Deform geometry node

This example demonstrates how you can use the Cloth Capture and Cloth Deform nodes to transfer the simulation from a low-res piece of cloth to a hi-res piece of cloth.

ConvToTrimSurface Example for Convert geometry node

This example shows how to create a trimmed NURBS or Bezier surface using the Convert SOP.

There are four examples contained that compare how a trimmed surface handles a texture.

  • Grid Surface a simple texture map on a grid.

  • Trimmed Circle Using the Trim SOP the conventional way of creating a trimmed surface using a Project SOP and a Trim SOP.

  • Trimmed Circle Using the Convert SOP creates a trimmed surface using a Convert SOP.

  • NURBS Surface Using the Convert SOP shows how a texture is parametrized over a surface that is not trimmed.

To get a better sense of the parameterization of the texture, turn on points and toggle between wireframe and shaded modes.

ConvertBasic Example for Convert geometry node

This example shows the various ways in which the Convert SOP converts geometry types using a simple sphere.

A chart is used for this demonstration.

The left column of the chart describes the original geometry type to convert from.

The top row of the chart describes the geometry type to convert to.

All Sphere SOPs and Convert SOPs in this demonstration use their default values to better visualize the differences.

CurveToPrimCircle Example for Convert geometry node

This example is a simple demonstration on how to convert a curve into a primitive circle.

To convert a NURBS or Bezier closed curve to a primitive circle, it must first be converted to a polygon.

Once converted to a closed polygon curve, you can convert the curve to a primitive circle.

CookieBasic

This example displays the various ways in which a Cookie SOP operates.

CreaseBasic Example for Crease geometry node

This demonstration contains four different examples of applying the creaseweight attribute to polygonal geometry utilizing the Crease SOP, Vertex SOP, Attribute Create SOP, and Subdivide SOP.

It also points out some of the differences between rendering with Mantra vs. RenderMan. It is important to know that Mantra can not render the creases due to Copyright laws.

Note

Rendering creases with Mantra requires the addition of a Subdivision SOP for calculating the geometry. The Render tab’s Geometry parameter at the object level should be set to: Geometry As Is.

If Renderman is being used, the Subdivide SOP is only for previewing the result. Renderman calculates creases during the render. The Render tab’s Geometry parameter at the object level should be set to: Polygons as Subdivision Surfaces.

CreepParticleTubeA Example for Creep geometry node

This example shows two different ways in which particles can be crept on a surface. In this case, the surface is a contorted tube.

One version shows how particles are crept inside the surface, the other shows how particles are crept outside the surface. This is done by changing the z scale in the Creep SOP, which offsets the particles perpendicular to the surface.

The particles are birthed from a circle that is carved from the tube geometry.

CreepSpiral Example for Creep geometry node

This example shows how to spiral a line geometry over a tube surface using the Creep SOP.

PopulateRandomAgents Example for Crowd Source geometry node

This example demonstrates how populate a crowd with several different types of agents.

CurveHood Example for Curve geometry node

This example demonstrates how to use the Curve SOP to create a car’s hood.

It also shows how to make points on a new curve dependent on the points of a previous curve. This way, you can move the points on one curve and affect any curve further in the network.

CurvesectRods Example for Curvesect geometry node

This example demonstrates the two functions of the Curvesect SOP, cut and extract.

It also illustrates how these two functions can be applied to an animation at the SOP and POP levels.

The information extracted by the Curvesect SOP during geometry collisions will be used to drive particle birth.

DeltaMushDemo Example for DeltaMush geometry node

This example demonstrates how the Delta Mush SOP is used to smooth out bone deformation.

LowHigh Example for Dop Import geometry node

This example shows how to create a low res - high res set up to support RBD objects. The two main methods are to reference copy the DOP Import SOP and feed in the high res geometry or to use point instancing with an Instance Object.

ReferenceGeometry Example for Edit geometry node

This example creates an animation illustrating how the Edit SOP’s Reference Geometry input can be used to apply an edit on animated geometry.

FacetVariations Example for Facet geometry node

This example shows the different ways to use the Facet SOP to let you control the smoothness or faceting of a given object. It also shows how you can consolidate points.

Press the right arrow key to show each example.

GridFillet Example for Fillet geometry node

The Fillet SOP is used to create a bridge between two NURBS surfaces with control over its parameterization. The fillet uses the original surface uv information for bridging.

Fillet types may include Freeform, Convex or Circular. The Freeform fillet usually provides a smooth natural form. Such parameters as the left and right UV, Width, Scale, and Offset may be used to control the fillet location between the surfaces.

DirectedEdgesPath Example for Find Shortest Path geometry node

This is an example of how to use the FindShortestPath SOP to find a path through geometry where certain edges are directed edges. Directed edges can only be traversed in one direction.

Try changing the start and end points, as well as the directed edges, to explore how the SOP avoids going the wrong direction, and cannot reach points with only outgoing edges.

PathAnalysis Example for Find Shortest Path geometry node

This is an advanced example of how to use the FindShortestPath SOP to prefer "central" paths, based on centraily measures computed using FindShortestPath and AttribWrangle. This helps avoid staying too close to walls where avoidable.

Turn on the Display Option > Optimization > Culling > Remove Backfaces to see inside the space more easily. Try visualizing the different centrality measures using the switch node. The same example without considering the centrality of the path is demonstrated in a side branch of the SOP network, in order to see the difference.

FitCurves Example for Fit geometry node

This is an example of how to use the Fit SOP to fit a NURBs curve to a basic polygon curve.

Fitting builds a new NURBs or Bezier curve through the input geometry’s points.

There are two methods for doing this:

Interpolation fitting outputs the same number of cv’s as the input curve (Original Polygon Curve).

Approximation fitting reduces the number of cv’s, while approximating a curve through the input points.

Play the animation to see how these two methods affect the resultant curve over time.

FitSurfaces Example for Fit geometry node

This contains examples of fitting a Polygon Mesh to a NURBS surface through the use of the Fit SOP. There are two methods of fitting:

  • Approximation, which generates primitives that roughly follow the path of the data points.

  • Interpolation, which generates primitives that touch all the data points.

ColourAdvect Example for Fluid Source geometry node

This example demonstrates how you can use the Fluid Source SOP to source and advect colours from an additional volume into a smoke simulation.

CoolLava Example for Fluid Source geometry node

This example demonstrates how to cool Lava using the Cool Within Object shelf tool.

BubblyFont Example for Font geometry node

The Font SOP is used to create 3D text geometry in the scene.

The geometry may be set to Polygon, Bezier, or a combination of the two.

With the combination, Bezier will be used for letters containing curves, and Polygon will be used for those with only straight edges.

Fonts other than those loaded by default may be loaded in the Font parameter.

FontBasic Example for Font geometry node

This example demonstrates some of the parameters available for formatting text using the Font SOP.

ForceBasic Example for Force geometry node

This example file uses the Force SOP in conjunction with Metaball SOPs and Particle SOPs to create dynamic animations.

Using the Radial Force Parameter of the Force SOP, particles are puffed in and out. Then, using the Directional Force Parameter, a rotating vortex is created as a metaball spins around an axis.

Press play to view the animation.

FractalGeoTypes Example for Fractal geometry node

This example demonstrates using the Fractal SOP to deform geometry to get a random, jagged subdivision surface. This is a useful tool in creating things such as bumpy terrains, landscapes, rocks, or debris.

The Fractal SOP is applied to each geometry type to show how the displacement changes based on the geometry type.

FurBallWorkflow Example for Fur geometry node

This example demonstrates how the Fur SOP and Mantra Fur Procedural can be applied to an animated skin geometry. CVEX shaders are used to apply a custom look to the hairs based upon attributes assigned to the geometry.

FuseHood Example for Fuse geometry node

This example shows how to consolidate points between unique curves using the Fuse SOP.

Three panels of a car hood are created and then fused together using the Fuse SOP.

GridBasic Example for Grid geometry node

The Grid SOP is a very commonly used primitive, especially as a particle source. It is very versatile and has many surface parameterization options.

In this example, there is a series of grids with alternative Primitive Types and Connectivity.

HoleBasic Example for Hole geometry node

This file demonstrates the Hole SOP.

There are four examples given of the Hole SOP, how to add holes to a surface, or remove them.

BasicJoin Example for Join geometry node

This example demonstrates how the Join SOP can connect multiple pieces of geometry by faces and surfaces.

The Join SOP will combine the individual pieces of geometry into a single primitive that will inherit attributes.

Nurbs, Bezier, or Mesh surfaces should be used with the Join SOP.

Do not use Polygons as it will not work with the Join SOP.

MultiUV

This example demonstrates how to have multiple shading layers with different uv sets using the Layer SOP and the VEX Layered Surface SHOP.

LsystemBuilding Example for L-System geometry node

This example demonstrates how to use the L-System SOP to generate buildings with windows.

MagnetDistortion Example for Magnet geometry node

This example demonstrates some of the various ways to use the Magnet SOP.

It can be used to affect point position, point color, point normals, and velocity.

MergeAttributes Example for Merge geometry node

The Merge SOP applies all incoming attributes to all input geometry. Each input geometry may have its own set of attributes.

Three spheres are wired into a Merge SOP. The first has no attributes applied. The second has a color attribute (Cd[3]) applied by a Point SOP. The third has a normal attribute (N[3]) applied by another Point SOP.

The Merge SOP does NOT know how to build attributes, but can apply them. As a result, all applied attribute values are set to zero.

This is why the first two spheres display and render black. They have normal attributes applied, but their values are set to zero.

In addition, the first and last spheres have a color attribute applied, but their values are set to zero.

It is better to set attributes explicitly, instead of relying on the Merge SOP to do so.

BlendMetaballs Example for Metaball geometry node

This is a basic example of how metaballs interact as force fields with a density threshold and falloff. Metaballs can be created in Houdini through the Metaball SOP

The Point SOP is used to provide a visual representation of how metaballs interact when their respective fields blend into one another in an additive fashion.

MetaExpression Example for Metaball geometry node

This example demonstrates how to use a Meta Expression in an Attribute Create SOP to control how metaballs merge together.

BoxNormals Example for Normal geometry node

This example uses the Normal SOP to show what point normals and vertex normals look like on 5 types of boxes and on extruded text.

PaintPoints Example for Paint geometry node

This example demonstrates how to paint scattered points onto the surface of your geometry with a set number of points per area.

PScale Example for Particle geometry node

This example shows the ability of the Particle SOP to define a default Size for any given birthed particle.

A simple Grid can be used to create a dynamic solution of particles streaming off as if blown by the wind. As these particles leave the grid, their size slowly diminishes, as the particle continues to die.

ParticleCollisionBasic Example for Particle geometry node

This is a basic example of using the Particle SOP to birth particles at the SOP level, and having the particles collide with geometry.

ParticleDisturbance Example for Particle geometry node

The given example file takes a grid, and using the Particle SOP in combination with the Metaball and Force SOPs, creates a dynamic animation.

A metaball ship jets through space driving particles out of its path along the wake of the ship. With the help of the Force SOP, the metaballs are given the properties necessary to make this reaction possible.

Play the animation to see the full effect.

ParticleExamples Example for Particle geometry node

This example contains five demonstrations of some of the various uses of the Particle SOP.

  • Creep particles along a surface using a the Creep SOP.

  • Group birth particles from a group of points on a surface.

  • Bounce particles.

  • Split particles on contact.

  • Collide particles off a collision object.

  • Birth particles from a moving object.

  • Use a metaball to exert force on a particle.

ParticleFountain Example for Particle geometry node

This is an example of creating a fountain from several Particle SOPs and basic modeling.

It demonstrates how to create normal offsets, velocity variances, and collision behaviors to control the motion and look of the particles.

ParticlePusher Example for Particle geometry node

This example uses a Metaball SOP and a Force SOP to push particles side to side as they pass through a particle stream generated by a Particle SOP.

Particles are birthed in the air off of a sphere, while a metaball passes back and forth through, pushing the particles from its path.

Play the animation to see the full effect.

ParticleTube Example for Particle geometry node

The Particle SOP enables the creation of particles at the SOP level and allows those particles to directly interact with geometry. Furthermore, these particles are in turn treated as point geometry.

In this example, particles are both crept along and collided with a collision tube object. It is possible to also manipulate and control particles in SOPs through the adjustment of point normals (including those of the particles).

PartitionBall Example for Partition geometry node

This example demonstrates how to break geometry in a DOPs simulation using the Partition SOP to determine the DOP Objects.

PlatonicSolidsTypes Example for Platonic Solids geometry node

The Platonic Solids SOP generates platonic solids of different types. Platonic solids are polyhedrons which are convex and have all the vertices and faces of the same type. There are only five such objects, which form the first five choices of this operation.

This example shows all seven of the different polyhedron forms that can be made using the Platonic Solids SOP.

CrossProduct Example for Point geometry node

This is an example of how to calculate a cross product by using the Point SOP. The cross product is defined as the vector perpendicular to two input vectors.

To visualize this demonstration, please explore the SOP network and turn on Point Normals in the display.

PointExamples Example for Point geometry node

The Point SOP is quite a versatile operator. This example shows how the Point SOP may be used to control point weight, color, normals, and UV attributes.

Furthermore, it is possible to create various relationships among the point attributes through the Point SOP.

PointNormals Example for Point geometry node

This is a demonstration of how the Point SOP can be used to add Normals to geometry.

It also shows how the Point Normals affect the orientation of copied geometry and the appearance of shaders.

PointOffsetSurface Example for Point geometry node

Using the Point SOP, a simple displacement is created and applied to a portion of a spherical surface.

Using the normals of a point, which is basically a vector, and adding that number to the position of the point, the point is displaced in that given direction. With a Merge and Skin SOP the displaced surface is then connected back to the original.

PointSpiral Example for Point geometry node

This example file uses the Point SOP to turn a regular line into a spiral.

There are two different approaches used in this example. The first uses the point numbers of the line to define the expression calculations. The second uses the position of the points in the line’s bounding box for the expression.

BridgeCurvesandPrims Example for Poly Bridge geometry node

This contains two examples of how to use the Bridge SOP.

The first example illustrates how to use the Bridge SOP on projected and trimmed curves. The second illustrates how to use the Bridge SOP on two carved primitives.

Press Play to see an animated version of the Bridge over Two Carves.

PolyextrudeTube Example for Poly Extrude geometry node

This example demonstrates how to extrude geometry using the Poly Extrude SOP, as well as demonstrating the different extrude controls, Global and Local.

PolyKnitBasic

This example demonstrates the various options for joining polygons using the PolyKnit SOP. The PolyKnit SOP is useful for filling in holes, gaps, or to re-define edges on polygonal geometry.

PolyKnit can be used to manually knit joining polygons between existing polygons. Polygons are created by specifying a list of input points from which to "knit" the new polygons.

PolyKnit will yield different results, depending on the pattern by which the points are selected or listed. Please see the Helpcard documentation for more information on how the PolyKnit SOP builds new polygons.

PolyPatchDNA Example for PolyPatch geometry node

This example demonstrates the use of the PolyPatch SOP to procedurally model complex forms.

Here, a DNA model is created.

PolyreduceBatwing Example for PolyReduce geometry node

This example demonstrates how to reduce the number of polygons on a piece of geometry using the Polyreduce SOP.

PolySplitHood Example for PolySplit geometry node

This example shows how to use the PolySplit SOP to refine the geometry of a car hood by splitting polygons.

PolyStitchBasicSmooth Example for PolyStitch geometry node

This example demonstrates how the Polystitch SOP can stitch together or refine seams between polygonal surfaces with incongruent U and V divisions. This is useful for smoothing and eliminating cracks at seams.

PolywireModel Example for PolyWire geometry node

This example demonstrates how the Polywire SOP builds polygonal geometry based on a polygonal frame, and how the parameters can be customized with local variables.

PopMerge

This example demonstrates how to reference a particle simulation using the POP Merge SOP.

PrimitiveColors Example for Primitive geometry node

This example demonstrates using the Primitive SOP to add a Color attribute to primitive geometry.

The rand() function is used in the RGB fields to generate different random colors for each primitive.

Then the prim() function is used to reference the attribute values of one SOP, to drive the attribute values of another SOP.

PrimitiveMetaWeight Example for Primitive geometry node

This example demonstrates the how the Primitive SOP can be used to drive the attributes of other geometry. In this case it is used to affect the Weight Parameter of a Metaball SOP.

In addition, the parameter can be animated over time. Press Play to see the animation.

FlagProfiles Example for Profile geometry node

This example shows how to use the Project SOP to create a profile on a surface.

The Profile SOP is then used to extract the profile from the surface or remap the profile on it. It also shows how the profile will animate with the surface or independent of it.

BasicRail Example for Rails geometry node

In this example simple curves are taken by the Rail SOP to create a surface based upon the path they describe.

With only simple changes to the SOP’s parameters different surfaces can be created. In the end the curves are gone, but their surface remains.

RayWrap Example for Ray geometry node

The Ray SOP projects one object over the surface contours of another.

It does so by calculating the collisions of the projected object’s normals with the surface geometry of the collided object.

In this example, a Grid is wrapped over the surface of a deformed Sphere using the Ray SOP.

A Facet SOP is used to correct the normals of the wrapped Grid after it is deformed over the surface.

BasicRefine Example for Refine geometry node

This example contains a few methods of how the Refine SOP can be used to add or remove detail from many types of surfaces.

ResampleLines Example for Resample geometry node

This example demonstrates the use of the Resample SOP on three types of curves. (Polygon, NURBS and Bezier)

The Resample SOP rebuilds the curve by converting it into a series of Polygon Line Segments.

The curve may be rebuilt "Along Arc" or "Along Chord". "Along Arc" utilizes the Hull information as a basis of reconstruction, and can be defined by a Maximum Segment Length and/or Maximum Segment number. "Along Chord" can only be defined by Maximum Segment Length.

Resampling the curve based on Maximum Segment number divides the line into segments of equal, but unspecified length, spanning from start to endpoint. Line detail is directly proportional to the Segment number.

Resampling the curve based on Maximum Segment Length will rebuild the entire line into equal length segments except the last segment. If the Maintain Last Vertex option is on, the last segment will be less than or equal to the Maximum Segment Length value, depending on its distance to the endpoint. With the option off, the endpoint is disregarded and the line is created out of equal lengths.

Turn on Points in the display to see how the Resample SOP resamples line segments.

BasicRest Example for Rest Position geometry node

The Rest Position SOP creates an attribute based on the surface normals that allows a shader to stick to a deforming surface.

All primitives support the rest attribute, but, in the case of quadric primitives (circle, tube, sphere and metaball primitives), the rest position is only translational. This means that rest normals will not work correctly for these primitive types either.

Use the Rest Position SOP only when you are deforming your geometry and you are assigning volumetric or solid materials/patterns in your shader.

Rest normals are required if feathering is used on polygons and meshes in Mantra. NURBs/Beziers will use the rest position to compute the correct resting normals.

It will be necessary to render the setup in order to see the effect.

BasicRevolve Example for Revolve geometry node

This example demonstrates the Revolve SOP’s ability to create geometry by spinning curves and surfaces around any described axis. Simple objects, such as a torus and a vase, are generated by the Revolve SOP and user-defined inputs.

This file also shows off how different geometry types react to different Revolve SOP parameter changes.

DoorWithPolkaDots Example for Scatter geometry node

This example demonstrates how you can use the Scatter SOP to scatter points that stay consistent through topology changes like remodelling the input geometry or breaking it. It does this by using the option to scatter in texture space.

GrassGrow Example for Scatter geometry node

This simple example demonstrates how you can use the Scatter SOP to randomly scatter grass across a basic terrain.

SpikyDeformingTorus Example for Scatter geometry node

This example demonstrates how you can use the Scatter SOP with the Attribute Interpolate SOP to easily adjust scattered points to stay consistent on deforming geometry.

SpottedSoccerBalls Example for Scatter geometry node

This example demonstrates how you can use the Scatter SOP to scatter points that stay consistent when separate pieces are added or removed. It does this by using the option to use custom random seeds for each primitive.

SkinBasic Example for Skin geometry node

This is a demonstration of using the Skin SOP to create complex forms by creating surfaces between one or two input geometries.

It also demonstrates how the Skin SOP can interpret between different geometry types and varying point numbers.

SkinCurves Example for Skin geometry node

This demonstration contains example networks showing 3 different methods by which the Skin SOP can assemble input curves to produce a variety of forms.

The methods covered in this demonstration are how the Skin SOP can make a form from a single asymmetrical curve, based on grouping primitives, or from multiple curves.

SkinShip Example for Skin geometry node

This example displays a creative use for the Skin SOP involving the creation of an alien ship.

Curves are first created with the Curve SOP. Then, with the Skin SOP individual curves can be selected to be used as reference for a generated surface.

SkinSurfaceCopies Example for Skin geometry node

This is an example of how to create a new surface using the Skin SOP.

Here a surface is extracted from a torus, copied and used to create a skin that shoots up from the torus.

Hills Example for Smooth geometry node

The Smooth SOP is used to refine the distance between a number of points into more uniform values.

The process evens out minor variances in the points defining the curve, while still maintaining the value trends of the larger, overall curve.

SphereTypes Example for Sphere geometry node

This example shows all the geometry types the Sphere SOP can create and explains the differences between them.

Choosing the right geometry type can make a network flow and render much faster.

BoundLattice Example for Spring geometry node

This network utilizes three SOPs (Bound, Spring and Lattice) that commonly work together to simulate certain physical dynamics.

We have created a simple polygonal sphere to act as the source geometry. The sphere is then fed into a Bound SOP which will act as a deforming reference. The Bound SOP also behaves as re-enforcement for the deforming object.

Then the bounding box is wired into the Spring SOP with a group of grids as collision objects. The Spring SOP simulates the dynamics by calculating the proper deformations and behaviours of our source geometry as it collides with other objects. The Spring SOP is where we can apply external forces along with various attributes (characteristics such as mass and drag) which influence how the object deforms.

Finally the Lattice SOP takes the deformation information from the Spring SOP and applies it to the source sphere geometry.

SpringExamples Example for Spring geometry node

This example demonstrates the three main functions of the Spring SOP.

It shows how the Spring SOP can deform input geometry to create a cloth like effect by creating interactions between two objects, defining motion, and applying forces.

Play the animation to see the Spring SOP in action.

SpringHair Example for Spring geometry node

This example demonstrates a way to create dynamic hair using the Spring SOP.

A Line is copied onto the points of a Sphere and input into the Spring SOP as a source. Then a Metaball and Force are input to further effect the motion of the hair.

SurfsectBasic Example for Surfsect geometry node

This example demonstrates the use of the Surfsect SOP’s boolean operation.

First a box is used to subtract from a Sphere leaving 4 disks. Then the Sphere is used to subtract from the Box leaving just the corners.

PlateBreak Example for TimeShift geometry node

This example demonstrates how to use the TimeShift SOP to achieve a slow-motion effect during a fracture simulation.

TorusExamples Example for Torus geometry node

This example contains the various geometry types possible when creating a torus.

Chainmail Example for Triangulate 2D geometry node

This example demonstrates advanced use of the new Triangulate2D SOP to create chainmail links.

BasicTwist Example for Twist geometry node

This example shows off the flexibility of the Twist SOP. The Twist SOP has many operations such as twist, bend, shear, taper, linear taper, and squash.

Contained are examples of how each Operation affects different geometry types: Polygon, Mesh, NURBs, NURBs Perfect, Bezier, and Bezier Perfect.

volumefromattrib Example for Volume from Attribute geometry node

This example shows how to use the Volume From Attrib SOP to transfer point attributes into volume voxels.

DetectOverlap Example for Volume Merge geometry node

This example shows how to detect the overlapping regions of many incoming volumes procedurally using Volume SOP and Volume Merge SOP.

volumesurface_hierarchy Example for Volume Surface geometry node

This example shows how to use the Volume Surface SOP to surface a hierarchy of SDFs using explicit grading.

ImportVolumes Example for Volume VOP geometry node

This example shows how to import multiple volumes into a Volume VOP SOP.

ModulusTransform Example for Transform geometry node

Create a cyclical animation using the Transform SOP, the Group SOP, and the modulus operation.

VOPpointgroup Example for Add Point to Group VOP node

Example of building point Groups in a VOP SOP where every other point is added to a new group.

Only point groups are supported in VOPs.

The VOPs you need to learn are:

Add Point To Group VOP, Create Point Group VOP, and Point In Group VOP

Fuzzy Logic Obstacle Avoidance Example Example for Fuzzy Defuzz VOP node

This example shows agent obstacle avoidance and path following implemented using a fuzzy logic controller.

SimpleMetaImport Example for Meta-Loop Import VOP node

This example demostrates how to use the Meta-Loop Start, Meta-Loop Next and Meta-Loop Import VOPs.

It calculates the sum of the densities of all metaballs in some input geometry, and uses that total to create an image in a Composite Network.

RampParameter Example for Parameter VOP node

This example shows how to control the particle colours using the temperature attributes from a pyro simulation using a Ramp Parameter VOP node.

RaytraceVopShader Example for Ray Trace VOP node

This example demonstrates a simple ray traced shader using a vop vex network. To modify the shader properties, create a properties shader in the material and connect it to the output shaders node. You can then add rendering parameters to the properties node. For example to control the number of reflection bounces, you would add the reflect limit parameter.

See also

Geometry nodes

  • Adaptive Prune

    Removes elements while trying to maintain the overall appearance.

  • Add

    Creates Points or Polygons, or adds points/polys to an input.

  • Agent

    Creates agent primitives.

  • Agent Clip

    Adds new clips to agent primitives.

  • Agent Clip Properties

    Defines how agents' animation clips should be played back.

  • Agent Clip Transition Graph

    Creates geometry describing possible transitions between animation clips.

  • Agent Collision Layer

    Creates a new agent layer that is suitable for collision detection.

  • Agent Configure Joints

    Creates point attributes that specify the rotation limits of an agent’s joints.

  • Agent Constraint Network

    Builds a constraint network to hold an agent’s limbs together.

  • Agent Edit

    Edits properties of agent primitives.

  • Agent Layer

    Adds a new layer to agent primitives.

  • Agent Look At

    Adjusts the head of an agent to look at a specific object or position.

  • Agent Look At

    Adjusts the head of an agent to look at a specific object or position.

  • Agent Prep

    Adds various common point attributes to agents for use by other crowd nodes.

  • Agent Prep

    Adds various common point attributes to agents for use by other crowd nodes.

  • Agent Proxy

    Provides simple proxy geometry for an agent.

  • Agent Relationship

    Creates parent-child relationships between agents.

  • Agent Terrain Adaptation

    Adapts agents' legs to conform to terrain and prevent the feet from sliding.

  • Agent Transform Group

    Adds new transform groups to agent primitives.

  • Alembic

    Loads the geometry from an Alembic scene archive (.abc) file into a geometry network.

  • Alembic Group

    Creates a geometry group for Alembic primitives.

  • Alembic Primitive

    Modifies intrinsic properties of Alembic primitives.

  • Alembic ROP output driver

  • Align

    Aligns a group of primitives to each other or to an auxiliary input.

  • Assemble

    Cleans up a series of break operations and creates the resulting pieces.

  • Attribute Blur

    Blurs out (or "relaxes") points in a mesh or a point cloud.

  • Attribute Cast

    Changes the size/precision Houdini uses to store an attribute.

  • Attribute Composite

    Composites vertex, point, primitive, and/or detail attributes between two or more selections.

  • Attribute Copy

    Copies attributes between groups of vertices, points, or primitives.

  • Attribute Create

    Adds or edits user defined attributes.

  • Attribute Delete

    Deletes point and primitive attributes.

  • Attribute Expression

    Allows simple VEX expressions to modify attributes.

  • Attribute Fade

    Fades a point attribute in and out over time.

  • Attribute Interpolate

    Interpolates attributes within primitives or based on explicit weights.

  • Attribute Mirror

    Copies and flips attributes from one side of a plane to another.

  • Attribute Promote

    Promotes or demotes attributes from one geometry level to another.

  • Attribute Randomize

    Generates random attribute values of various distributions.

  • Attribute Rename

    Renames or deletes point and primitive attributes.

  • Attribute Reorient

    Modifies point attributes based on differences between two models.

  • Attribute String Edit

    Edits string attribute values.

  • Attribute Swap

    Copies, moves, or swaps the contents of attributes.

  • Attribute Transfer

    Transfers vertex, point, primitive, and/or detail attributes between two models.

  • Attribute Transfer By UV

    Transfers attributes between two geometries based on UV proximity.

  • Attribute VOP

    Runs a VOP network to modify geometry attributes.

  • Attribute Wrangle

    Runs a VEX snippet to modify attribute values.

  • Attribute from Map

    Samples texture map information to a point attribute.

  • Attribute from Volume

    Copies information from a volume onto the point attributes of another piece of geometry, with optional remapping.

  • Bake ODE

    Converts primitives for ODE and Bullet solvers.

  • Bake Volume

    Computes lighting values within volume primitives

  • Basis

    Provides operations for moving knots within the parametric space of a NURBS curve or surface.

  • Bend

    Applies deformations such as bend, taper, squash/stretch, and twist.

  • Blast

    Deletes primitives, points, edges or breakpoints.

  • Blend Shapes

    Computes a 3D metamorphosis between shapes with the same topology.

  • Block Begin

    The start of a looping block.

  • Block Begin Compile

    The start of a compile block.

  • Block End

    The end/output of a looping block.

  • Block End Compile

    The end/output of a compile block.

  • Bone Capture

    Supports Bone Deform by assigning capture weights to bones.

  • Bone Capture Biharmonic

    Supports Deform by assigning capture weights to points based on biharmonic functions on tetrahedral meshes.

  • Bone Capture Lines

    Supports Bone Capture Biharmonic by creating lines from bones with suitable attributes.

  • Bone Capture Proximity

    Supports Bone Deform by assigning capture weights to points based on distance to bones.

  • Bone Deform

    Uses capture attributes created from bones to deform geometry according to their movement.

  • Bone Link

    Creates default geometry for Bone objects.

  • Boolean

    Combines two polygonal objects with boolean operators, or finds the intersection lines between two polygonal objects.

  • Bound

    Creates an axis-aligned bounding box or sphere for the input geometry.

  • Box

    Creates a cube or six-sided rectangular box.

  • Break

    Breaks the input geometry using the specified cutting shape.

  • Bulge

    Deforms the points in the first input using one or more magnets from the second input.

  • Cache

    Records and caches its input geometry for faster playback.

  • Cap

    Closes open areas with flat or rounded coverings.

  • Capture Attribute Pack

    Converts array attributes into a single index-pair capture attribute.

  • Capture Attribute Unpack

    Converts a single index-pair capture attribute into per-point and detail array attributes.

  • Capture Correct

    Adjusts capture regions and capture weights.

  • Capture Layer Paint

    Lets you paint capture attributes directly onto geometry.

  • Capture Mirror

    Copies capture attributes from one half of a symmetric model to the other.

  • Capture Override

    Overrides the capture weights on individual points.

  • Capture Region

    Supports Capture and Deform operation by creating a volume within which points are captured to a bone.

  • Carve

    Slices, cuts or extracts points or cross-sections from a primitive.

  • Channel

    Reads sample data from a chop and converts it into point positions and point attributes.

  • Circle

    Creates open or closed arcs, circles and ellipses.

  • Clay

    Lets you deform NURBS faces and NURBS surfaces by pulling points that lie directly on them.

  • Clean

    Helps clean up dirty models.

  • Clip

    Removes or groups geometry on one side of a plane, or creases geometry along a plane.

  • Cloth Capture

    Captures low-res simulated cloth.

  • Cloth Deform

    Deforms geometry captured by the Cloth Capture SOP.

  • Cloud

    Creates a volume representation of source geometry.

  • Cloud Light

    Fills a volume with a diffuse light.

  • Cloud Noise

    Applies a cloud like noise to a Fog volume.

  • Cluster

    Low-level machinery to cluster points based on their positions (or any vector attribute).

  • Cluster Points

    Higher-level node to cluster points based on their positions (or any vector attribute).

  • Collision Source

    Creates geometry and VDB volumes for use with DOPs collisions.

  • Color

    Adds color attributes to geometry.

  • Comb

    Adjust surface point normals by painting.

  • Connect Adjacent Pieces

    Creates lines between nearby pieces.

  • Connectivity

    Creates an attribute with a unique value for each set of connected primitives or points.

  • Control

    Creates simple geometry for use as control shapes.

  • Convert

    Converts geometry from one geometry type to another.

  • Convert HeightField

    Converts a 2D height field to a 3D VDB volume, polygon surface, or polygon soup surface.

  • Convert Line

    Converts the input geometry into line segments.

  • Convert Meta

    Polygonizes metaball geometry.

  • Convert Tets

    Generates the oriented surface of a tetrahedron mesh.

  • Convert VDB

    Converts sparse volumes.

  • Convert VDB Points

    Converts a Point Cloud into a VDB Points Primitive, or vice versa.

  • Convert Volume

    Converts the iso-surface of a volume into a polygonal surface.

  • Copy Stamp

    Creates multiple copies of the input geometry, or copies the geometry onto the points of the second input.

  • Copy and Transform

    Copies geometry and applies transformations to the copies.

  • Copy to Points

    Copies the geometry in the first input onto the points of the second input.

  • Crease

    Manually adds or removes a creaseweight attribute to/from polygon edges, for use with the Subdivide SOP.

  • Creep

    Deforms and animates a piece of geometry across a surface.

  • Crowd Source

    Populates a crowd of agent primitives.

  • Crowd Source

    Creates crowd agents to be used with the crowd solver.

  • Curve

    Creates polygonal, NURBS, or Bezier curves.

  • Curveclay

    Deforms a spline surface by reshaping a curve on the surface.

  • Curvesect

    Finds the intersections (or points of minimum distance) between two or more curves or faces.

  • DOP I/O

    Imports fields from DOP simulations, saves them to disk, and loads them back again.

  • DOP Import Fields

    Imports scalar and vector fields from a DOP simulation.

  • DOP Import Records

    Imports option and record data from DOP simulations into points with point attributes.

  • DOP Network

  • Debris Source

    Generates point emission sources for debris from separating fractured rigid body objects.

  • Deformation Wrangle

    Runs a VEX snippet to deform geometry.

  • Delete

    Deletes input geometry by group, entity number, bounding volume, primitive/point/edge normals, and/or degeneracy.

  • Delete Overlapping Polygons

    Removes polygons that overlap.

  • DeltaMush

    Smooths out (or "relaxes") point deformations.

  • Dissolve

    Deletes edges from the input polygonal geometry merging polygons with shared edges.

  • Dissolve

    Deletes points, primitives, and edges from the input geometry and repairs any holes left behind.

  • Divide

    Divides, smooths, and triangulates polygons.

  • Dop Import

    Imports and transforms geometry based on information extracted from a DOP simulation.

  • Draw Curve

    Creates a curve based on user input in the viewport.

  • Draw Guides

  • Each

    Culls the input geometry according to the specifications of the For Each SOP.

  • Edge Collapse

    Collapses edges and faces to their centerpoints.

  • Edge Cusp

    Sharpens edges by uniquing their points and recomputing point normals.

  • Edge Divide

    Inserts points on the edges of polygons and optionally connects them.

  • Edge Flip

    Flips the direction of polygon edges.

  • Edge Transport

    Copies and optionally modifies attribute values along edges networks and curves.

  • Edit

    Edits points, edges, or faces interactively.

  • Ends

    Closes, opens, or clamps end points.

  • Enumerate

    Sets an attribute on selected points or primitives to sequential numbers.

  • Error

    Generates a message, warning, or error, which can show up on a parent asset.

  • Exploded View

    Pushes geometry out from the center to create an exploded view.

  • Extrude

    Extrudes geometry along a normal.

  • Extrude Volume

    Extrudes surface geometry into a volume.

  • Facet

    Controls the smoothness of faceting of a surface.

  • Filament Advect

    Evolves polygonal curves as vortex filaments.

  • File

    Reads, writes, or caches geometry on disk.

  • File Cache

    Writes and reads geometry sequences to disk.

  • File Merge

    Reads and collates data from disk.

  • Fillet

    Creates smooth bridging geometry between two curves or surfaces.

  • Filmbox FBX ROP output driver

  • Find Shortest Path

    Finds the shortest paths from start points to end points, following the edges of a surface.

  • Fit

    Fits a spline curve to points, or a spline surface to a mesh of points.

  • Fluid Compress

    Compresses the output of fluid simulations to decrease size on disk

  • Fluid Source

    Creates one or multiple volumes out of geometry to be used in a fluid simulation

  • Font

    Creates 3D text from Type 1, TrueType and OpenType fonts.

  • Force

    Uses a metaball to attract or repel points or springs.

  • Fractal

    Creates jagged mountain-like divisions of the input geometry.

  • Fur

    Creates a set of hair-like curves across a surface.

  • Fuse

    Merges or splits (uniques) points.

  • Geometry ROP output driver

  • Glue Cluster

    Adds strength to a glue constraint network according to cluster values.

  • Grain Source

    Generates particles to be used as sources in a particle-based grain simulation.

  • Grid

    Creates planar geometry.

  • Groom Blend

    Blends the guides and skin of two grooms.

  • Groom Fetch

    Fetches groom data from grooming objects.

  • Groom Pack

    Packs the components of a groom into a set of named Packed Primitives for the purpose of writing it to disk.

  • Groom Switch

    Switches between all components of two groom streams.

  • Groom Unpack

    Unpacks the components of a groom from a packed groom.

  • Group

    Generates groups of points, primitives, edges, or vertices according to various criteria.

  • Group Combine

    Combines point groups, primitive groups, or edge groups according to boolean operations.

  • Group Copy

    Copies groups between two pieces of geometry, based on point/primitive numbers.

  • Group Delete

    Deletes groups of points, primitives, edges, or vertices according to patterns.

  • Group Expression

    Runs VEX expressions to modify group membership.

  • Group Paint

    Sets group membership interactively by painting.

  • Group Promote

    Converts point, primitive, edge, or vertex groups into point, primitive, edge, or vertex groups.

  • Group Range

    Groups points and primitives by ranges.

  • Group Rename

    Renames groups according to patterns.

  • Group Transfer

    Transfers groups between two pieces of geometry, based on proximity.

  • Guide Advect

    Advects guide points through a velocity volume.

  • Guide Collide With VDB

    Resolves collisions of guide curves with VDB signed distance fields.

  • Guide Deform

    Deforms geometry with an animated skin and optionally guide curves.

  • Guide Groom

    Allows intuitive manipulation of guide curves in the viewport.

  • Guide Group

    Creates standard primitive groups used by grooming tools.

  • Guide Initialize

    Quickly give hair guides some initial direction.

  • Guide Mask

    Creates masking attributes for other grooming operations.

  • Guide Partition

    Creates and prepares parting lines for use with hair generation.

  • Guide Skin Attribute Lookup

    Looks up skin geometry attributes under the root point of guide curves.

  • Guide Tangent Space

    Constructs a coherent tangent space along a curve.

  • Guide Transfer

    Transfer hair guides between geometries.

  • Hair Clump

    Clumps guide curves together.

  • Hair Generate

    Generates hair on a surface or from points.

  • Hair Growth Field

    Generates a velocity field based on stroke primitives.

  • HeightField

    Generates an initial heightfield volume for use with terrain tools.

  • HeightField Blur

    Blurs a terrain height field or mask.

  • HeightField Clip

    Limits height values to a certain minimum and/or maximum.

  • HeightField Copy Layer

    Creates a copy of a height field or mask.

  • HeightField Crop

    Extracts a square of a certain width/length from a larger height volume, or resizes/moves the boundaries of the height field.

  • HeightField Distort

    Advects the input volume through a noise pattern to break up hard edges and add variety.

  • HeightField Draw Mask

    Lets you draw shapes to create a mask for height field tools.

  • HeightField Erode

    Calculates thermal and hydraulic erosion over time (frames) to create more realistic terrain.

  • HeightField File

    Imports a 2D image map from a file or compositing node into a height field or mask.

  • HeightField Isolate Layer

    Copies another layer over the mask layer, and optionally flattens the height field.

  • HeightField Layer

    Composites together two height fields.

  • HeightField Layer Clear

    Sets all values in a heightfield layer to 0.

  • HeightField Layer Property

    Sets the border voxel policy on a height field volume.

  • HeightField Mask by Feature

    Creates a mask based on different features of the height layer.

  • HeightField Mask by Object

    Creates a mask based some other geometry.

  • HeightField Noise

    Adds vertical noise to a height field, creating peaks and valleys.

  • HeightField Output

    Exports height and/or mask layers to disk as an image.

  • HeightField Paint

    Lets you paint values into a height or mask field using strokes.

  • HeightField Patch

    Patches features from one heightfield to another.

  • HeightField Pattern

    Adds displacement in the form of a ramps, steps, stripes, Voronoi cells, or other patterns.

  • HeightField Project

    Projects 3D geometry into a height field.

  • HeightField Quick Shade

    Applies a material that lets you plug in textures for different layers.

  • HeightField Remap

    Remaps the values in a height field or mask layer.

  • HeightField Resample

    Changes the resolution of a height field.

  • HeightField Scatter

    Scatters points across the surface of a height field.

  • HeightField Slump

    Simulates loose material sliding down inclines and piling at the bottom.

  • HeightField Terrace

    Creates stepped plains from slopes in the terrain.

  • HeightField Tile Splice

    Stitches height field tiles back together.

  • HeightField Tile Split

    Splits a height field volume into rows and columns.

  • HeightField Transform

    Height field specific scales and offsets.

  • HeightField Visualize

    Visualizes elevations using a custom ramp material, and mask layers using tint colors.

  • Hole

    Makes holes in surfaces.

  • Inflate

    Deforms the points in the first input to make room for the inflation tool.

  • Instance

    Instances Geometry on Points.

  • Intersection Analysis

    Creates points with attributes at intersections between a triangle and/or curve mesh with itself, or with an optional second set of triangles and/or curves.

  • Intersection Stitch

    Composes triangle surfaces and curves together into a single connected mesh.

  • Invoke Compiled Block

    Processes its inputs using the operation of a referenced compiled block.

  • IsoOffset

    Builds an offset surface from geometry.

  • IsoSurface

    Generates an isometric surface from an implicit function.

  • Join

    The Join op connects a sequence of faces or surfaces into a single primitive that inherits their attributes.

  • Knife

    Divides, deletes, or groups geometry based on an interactively drawn line.

  • L-System

    Creates fractal geometry from the recursive application of simple rules.

  • Lattice

    Deforms geometry based on how you reshape control geometry.

  • Lidar Import

    Reads a lidar file and imports a point cloud from its data.

  • Line

    Creates polygon or NURBS lines from a position, direction, and distance.

  • MDD

    Animates points using an MDD file.

  • Magnet

    Deforms geometry by using another piece of geometry to attract or repel points.

  • Match Axis

    Aligns the input geometry to a specific axis.

  • Match Size

    Resizes and recenters the geometry according to reference geometry.

  • Match Topology

    Reorders the primitive and point numbers of the input geometry to match some reference geometry.

  • Material

    Assigns one or more materials to geometry.

  • Measure

    Measures volume, area, and perimeter of polygons and puts the results in attributes.

  • Merge

    Merges geometry from its inputs.

  • MetaGroups

    Defines groupings of metaballs so that separate groupings are treated as separate surfaces when merged.

  • Metaball

    Creates metaballs and meta-superquadric surfaces.

  • Mirror

    Duplicates and mirrors geometry across a mirror plane.

  • Mountain

    Displaces points along their normals based on fractal noise.

  • Mountain

    Displaces points along their normals based on fractal noise.

  • Muscle Capture

    Supports Muscle Deform by assigning capture weights to points based on distance away from given primitives

  • Muscle Deform

    Deforms a surface mesh representing skin to envelop or drape over geometry representing muscles

  • Name

    Creates a "naming" attribute on points or primitives allowing you to refer to them easily, similar to groups.

  • Normal

    Computes surface normal attribute.

  • Null

    Does nothing.

  • Object Merge

    Merges geometry from multiple sources and allows you to define the manner in which they are grouped together and transformed.

  • Object_musclerig@musclerigstrokebuilder

  • Object_riggedmuscle@musclestrokebuilder

    Assists the creation of a Muscle or Muscle Rig by allowing you to draw a stroke on a projection surface.

  • Ocean Evaluate

    Deforms input geometry based on ocean "spectrum" volumes.

  • Ocean Evaluate

    Deforms input geometry based on ocean "spectrum" volumes.

  • Ocean Foam

    Generates particle-based foam

  • Ocean Source

    Generates particles and volumes from ocean "spectrum" volumes for use in simulations

  • Ocean Source

    Generates particles and volumes from ocean "spectrum" volumes for use in simulations

  • Ocean Spectrum

    Generates volumes containing information for simulating ocean waves.

  • Ocean Waves

    Instances individual waveforms onto input points and generated points.

  • OpenCL

    Executes an OpenCL kernel on geometry.

  • Output

    Marks the output of a sub-network.

  • Pack

    Packs geometry into an embedded primitive.

  • Pack Points

    Packs points into a tiled grid of packed primitives.

  • Packed Disk Edit

    Editing Packed Disk Primitives.

  • Packed Edit

    Editing Packed Primitives.

  • Paint

    Lets you paint color or other attributes on geometry.

  • Paint Color Volume

    Creates a color volume based on drawn curve

  • Paint Fog Volume

    Creates a fog volume based on drawn curve

  • Paint SDF Volume

    Creates an SDF volume based on drawn curve

  • Particle

    Creates simple particle simulations without requiring an entire particle network.

  • Particle Fluid Surface

    Generates a surface around the particles from a particle fluid simulation.

  • Particle Fluid Tank

    Creates a set of regular points filling a tank.

  • Partition

    Places points and primitives into groups based on a user-supplied rule.

  • Peak

    Moves primitives, points, edges or breakpoints along their normals.

  • Platonic Solids

    Creates platonic solids of different types.

  • Point

    Manually adds or edits point attributes.

  • Point Cloud Iso

    Constructs an iso surface from its input points.

  • Point Deform

    Deforms geometry on an arbitrary connected point mesh.

  • Point Generate

    Creates new points, optionally based on point positions in the input geometry.

  • Point Jitter

    Jitters points in random directions.

  • Point Relax

    Moves points with overlapping radii away from each other, optionally on a surface.

  • Point Replicate

    Generates a cloud of points around the input points.

  • Points from Volume

    Creates set of regular points filling a volume.

  • Poly Bridge

    Creates flat or tube-shaped polygon surfaces between source and destination edge loops, with controls for the shape of the bridge.

  • Poly Expand 2D

    Creates offset polygonal geometry for planar polygonal graphs.

  • Poly Extrude

    Extrudes polygonal faces and edges.

  • PolyBevel

    Creates straight, rounded, or custom fillets along edges and corners.

  • PolyBevel

    Bevels points and edges.

  • PolyCut

    Breaks curves where an attribute crosses a threshold.

  • PolyDoctor

    Helps repair invalid polygonal geometry, such as for cloth simulation.

  • PolyExtrude

    Extrudes polygonal faces and edges.

  • PolyFill

    Fills holes with polygonal patches.

  • PolyFrame

    Creates coordinate frame attributes for points and vertices.

  • PolyLoft

    Creates new polygons using existing points.

  • PolyPatch

    Creates a smooth polygonal patch from primitives.

  • PolyPath

    Cleans up topology of polygon curves.

  • PolyReduce

    Reduces the number of polygons in a model while retaining its shape. This node preserves features, attributes, textures, and quads during reduction.

  • PolySoup

    Combines polygons into a single primitive that can be more efficient for many polygons

  • PolySpline

    The PolySpline SOP fits a spline curve to a polygon or hull and outputs a polygonal approximation of that spline.

  • PolySplit

    Divides an existing polygon into multiple new polygons.

  • PolySplit

    Divides an existing polygon into multiple new polygons.

  • PolyStitch

    Stitches polygonal surfaces together, attempting to remove cracks.

  • PolyWire

    Constructs polygonal tubes around polylines, creating renderable geometry with smooth bends and intersections.

  • Pose Scope

    Assigns channel paths and/or pickscripts to geometry.

  • Primitive

    Edits primitive, primitive attributes, and profile curves.

  • Primitive Split

    Takes a primitive attribute and splits any points whose primitives differ by more than a specified tolerance at that attribute.

  • Profile

    Extracts or manipulates profile curves.

  • Project

    Creates profile curves on surfaces.

  • Python

    Runs a Python snippet to modify the incoming geometry.

  • RMan Shader

    Attaches RenderMan shaders to groups of faces.

  • Rails

    Generates surfaces by stretching cross-sections between two guide rails.

  • Ray

    Projects one surface onto another.

  • Refine

    Increases the number of points/CVs in a curve or surface without changing its shape.

  • Reguide

    Scatters new guides, interpolating the properties of existing guides.

  • Remesh

    Recreates the shape of the input surface using "high-quality" (nearly equilateral) triangles.

  • Repack

    Repacks geometry as an embedded primitive.

  • Resample

    Resamples one or more curves or surfaces into even length segments.

  • Rest Position

    Sets the alignment of solid textures to the geometry so the texture stays put on the surface as it deforms.

  • Reverse

    Reverses or cycles the vertex order of faces.

  • Revolve

    Revolves a curve around a center axis to sweep out a surface.

  • Rewire Vertices

    Rewires vertices to different points specified by an attribute.

  • Ripple

    Generates ripples by displacing points along the up direction specified.

  • Scatter

    Scatters new points randomly across a surface or through a volume.

  • Script

    Runs scripts when cooked.

  • Sculpt

    Lets you interactively reshape a surface by brushing.

  • Sequence Blend

    Morphs though a sequence of 3D shapes, interpolating geometry and attributes.

  • Sequence Blend

    Sequence Blend lets you do 3D Metamorphosis between shapes and Interpolate point position, colors…

  • Shrinkwrap

    Computes the convex hull of the input geometry and moves its polygons inwards along their normals.

  • Shrinkwrap

    Takes the convex hull of input geometry and moves its polygons inwards along their normals.

  • Skin

    Builds a skin surface between any number of shape curves.

  • Sky

    Creates a sky filled with volumentric clouds

  • Smooth

    Smooths out (or "relaxes") polygons, meshes and curves without increasing the number of points.

  • Smooth

    Smooths out (or "relaxes") polygons, meshes and curves without increasing the number of points.

  • Soft Peak

    Moves the selected point along its normal, with smooth rolloff to surrounding points.

  • Soft Transform

    Moves the selected point, with smooth rolloff to surrounding points.

  • Solid Conform

    Creates a tetrahedral mesh that conforms to a connected mesh as much as possible.

  • Solid Embed

    Creates a simple tetrahedral mesh that covers a connected mesh.

  • Solid Fracture

    Creates a partition of a tetrahedral mesh that can be used for finite-element fracturing.

  • Solver

    Allows running a SOP network iteratively over some input geometry, with the output of the network from the previous frame serving as the input for the network at the current frame.

  • Sort

    Reorders points and primitives in different ways.

  • Sphere

    Creates a sphere or ovoid surface.

  • Split

    Splits primitives or points into two streams.

  • Spray Paint

    Spray paints random points onto a surface.

  • Spring

    Simulates the behavior of points as if the edges connecting them were springs.

  • Sprite

    A SOP node that sets the sprite display for points.

  • Starburst

    Insets points on polygonal faces.

  • Stash

    Caches the input geometry in the node on command, and then uses it as the node’s output.

  • Stitch

    Stretches two curves or surfaces to cover a smooth area.

  • Stroke

    Low level tool for building interactive assets.

  • Stroke Cache

    Simplifies the building of tools that incrementally modify geometry based on strokes.

  • Subdivide

    Subdivides polygons into smoother, higher-resolution polygons.

  • Subnetwork

    The Subnet op is essentially a way of creating a macro to represent a collection of ops as a single op in the Network Editor.

  • Super Quad

    Generates an isoquadric surface.

  • Surfsect

    Trims or creates profile curves along the intersection lines between NURBS or bezier surfaces.

  • Sweep

    Creates a surface by sweeping cross-sections along a backbone curve.

  • Switch

    Switches between network branches based on an expression or keyframe animation.

  • Table Import

    Reads a CSV file creating point per row.

  • Test Geometry: Pig Head

    Creates a pig head, which can be used as test geometry..

  • Test Geometry: Rubber Toy

    Creates a rubber toy, which can be used as test geometry.

  • Test Geometry: Shader Ball

    Creates a shader ball, which can be used to test shaders.

  • Test Geometry: Squab

    Creates a squab, which can be used as test geometry.

  • Test Geometry: Tommy

    Creates a soldier, which can be used as test geometry.

  • Test Simulation: Crowd Transition

    Provides a simple crowd simulation for testing transitions between animation clips.

  • Test Simulation: Ragdoll

    Provides a simple Bullet simulation for testing the behavior of a ragdoll.

  • Tet Partition

    Partitions a given tetrahedron mesh into groups of tets isolated by a given polygon mesh

  • Tetrahedralize

    Performs variations of a Delaunay Tetrahedralization.

  • Time Warp

    Retimes the input to a different time range.

  • TimeBlend

    Blends intraframe values for geometry.

  • TimeShift

    Cooks the input at a different time.

  • Toon Shader Attributes

    Sets attributes used by the Toon Color Shader and Toon Outline Shader.

  • TopoBuild

    Lets you interactively draw a reduced quad mesh automatically snapped to existing geometry.

  • Torus

    Creates a torus (doughnut) shaped surface.

  • Trace

    Traces curves from an image file.

  • Trail

    Creates trails behind points.

  • Transform

    The Transform operation transforms the source geometry in "object space" using a transformation matrix.

  • Transform Axis

    Transforms the input geometry relative to a specific axis.

  • Transform By Attribute

    Transforms the input geometry by a point attribute.

  • Transform Pieces

    Transforms input geometry according to transformation attributes on template geometry.

  • Tri Bezier

    Creates a triangular Bezier surface.

  • TriDivide

    Refines triangular meshes using various metrics.

  • Triangulate 2D

    Connects points to form well-shaped triangles.

  • Trim

    Trims away parts of a spline surface defined by a profile curve or untrims previous trims.

  • Tube

    Creates open or closed tubes, cones, or pyramids.

  • Twist

    Applies deformations such as bend, linear taper, shear, squash/stretch, taper, and twist.

  • UV Brush

    Adjusts texture coordinates in the UV viewport by painting.

  • UV Edit

    Lets you interactively move UVs in the texture view.

  • UV Flatten

    Creates flattened pieces in texture space from 3D geometry.

  • UV Flatten

    Creates flattened pieces in texture space from 3D geometry.

  • UV Fuse

    Merges UVs.

  • UV Layout

    Tries to pack UV islands efficiently into a limited area.

  • UV Pelt

    Relaxes UVs by pulling them out toward the edges of the texture area.

  • UV Project

    Assigns UVs by projecting them onto the surface from a set direction.

  • UV Quick Shade

    Applies an image file as a textured shader to a surface.

  • UV Texture

    Assigns texture UV coordinates to geometry for use in texture and bump mapping.

  • UV Transform

    Transforms UV texture coordinates on the source geometry.

  • UV Transform

    Transforms UV texture coordinates on the source geometry.

  • UV Unwrap

    Separates UVs into reasonably flat, non-overlapping groups.

  • Unix

    Processes geometry using an external program.

  • Unpack

    Unpacks packed primitives.

  • Unpack Points

    Unpacks points from packed primitives.

  • VDB

    Creates one or more empty/uniform VDB volume primitives.

  • VDB Activate

    Activates voxel regions of a VDB for further processing.

  • VDB Activate SDF

    Expand or contract signed distance fields stored on VDB volume primitives.

  • VDB Advect Points

    Moves points in the input geometry along a VDB velocity field.

  • VDB Advect SDF

    Moves SDF VDBs in the input geometry along a VDB velocity field.

  • VDB Analysis

    Computes an analytic property of a VDB volumes, such as gradient or curvature.

  • VDB Clip

    Clips VDB volume primitives using a bounding box or another VDB as a mask.

  • VDB Combine

    Combines the values of two aligned VDB volumes in various ways.

  • VDB Diagnostics

    Tests VDBs for Bad Values and Repairs.

  • VDB Fracture

    Cuts level set VDB volume primitives into multiple pieces.

  • VDB LOD

    Build an LOD Pyramid from a VDB.

  • VDB Morph SDF

    Blends between source and target SDF VDBs.

  • VDB Occlusion Mask

    Create a mask of the voxels in shadow from a camera for VDB primitives.

  • VDB Points Group

    Manipulates the Internal Groups of a VDB Points Primitive.

  • VDB Project Non-Divergent

    Removes divergence from a Vector VDB.

  • VDB Renormalize SDF

    Fixes signed distance fields stored in VDB volume primitives.

  • VDB Resample

    Re-samples a VDB volume primitive into a new orientation and/or voxel size.

  • VDB Reshape SDF

    Reshapes signed distance fields in VDB volume primitives.

  • VDB Segment by Connectivity

    Splits SDF VDBs into connected components.

  • VDB Smooth

    Smooths out the values in a VDB volume primitive.

  • VDB Smooth SDF

    Smooths out SDF values in a VDB volume primitive.

  • VDB Topology to SDF

    Creates an SDF VDB based on the active set of another VDB.

  • VDB Vector Merge

    Merges three scalar VDB into one vector VDB.

  • VDB Vector Split

    Splits a vector VDB primitive into three scalar VDB primitives.

  • VDB Visualize Tree

    Replaces a VDB volume with geometry that visualizes its structure.

  • VDB from Particle Fluid

    Generates a signed distance field (SDF) VDB volume representing the surface of a set of particles from a particle fluid simulation.

  • VDB from Particles

    Converts point clouds and/or point attributes into VDB volume primitives.

  • VDB from Polygons

    Converts polygonal surfaces and/or surface attributes into VDB volume primitives.

  • VDB to Spheres

    Fills a VDB volume with adaptively-sized spheres.

  • VEX SOP

    References a VEX program that can manipulate point attributes.

  • Verify BSDF

    Verify that a bsdf conforms to the required interface.

  • Vertex

    Manually adds or edits attributes on vertices (rather than on points).

  • Vertex Split

    Takes a vertex attribute and splits any point whose vertices differ by more than a specified tolerance at that attribute.

  • Visibility

    Shows/hides primitives in the 3D viewer and UV editor.

  • Visualize

    Lets you attach visualizations to different nodes in a geometry network.

  • Volume

    Creates a volume primitive.

  • Volume Analysis

    Computes analytic properties of volumes.

  • Volume Arrival Time

    Computes a speed-defined travel time from source points to voxels.

  • Volume Blur

    Blurs the voxels of a volume.

  • Volume Bound

    Bounds voxel data.

  • Volume Break

    Cuts polygonal objects using a signed distance field volume.

  • Volume Compress

    Re-compresses Volume Primitives.

  • Volume Convolve 3×3×3

    Convolves a volume by a 3×3×3 kernel.

  • Volume FFT

    Compute the Fast Fourier Transform of volumes.

  • Volume Feather

    Feathers the edges of volumes.

  • Volume Merge

    Flattens many volumes into one volume.

  • Volume Mix

    Combines the scalar fields of volume primitives.

  • Volume Optical Flow

    Translates the motion between two "image" volumes into displacement vectors.

  • Volume Patch

    Fill in a region of a volume with features from another volume.

  • Volume Ramp

    Remaps a volume according to a ramp.

  • Volume Rasterize

    Rasterizes into a volume.

  • Volume Rasterize Curve

    Converts a curve into a volume.

  • Volume Rasterize Hair

    Converts fur or hair to a volume for rendering.

  • Volume Rasterize Particles

    Converts a point cloud into a volume.

  • Volume Rasterize Points

    Converts a point cloud into a volume.

  • Volume Reduce

    Reduces the values of a volume into a single number.

  • Volume Resample

    Resamples the voxels of a volume to a new resolution.

  • Volume Resize

    Resizes the bounds of a volume without changing voxels.

  • Volume SDF

    Builds a Signed Distance Field from an isocontour of a volume.

  • Volume Slice

    Extracts 2d slices from volumes.

  • Volume Splice

    Splices overlapping volume primitives together.

  • Volume Stamp

    Stamps volumes instanced on points into a single target volume.

  • Volume Surface

    Adaptively surfaces a volume hierarchy with a regular triangle mesh.

  • Volume Trail

    Computes a trail of points through a velocity volume.

  • Volume VOP

    Runs CVEX on a set of volume primitives.

  • Volume Velocity

    Computes a velocity volume.

  • Volume Velocity from Curves

    Generates a volume velocity field using curve tangents.

  • Volume Velocity from Surface

    Generates a velocity field within a surface geometry.

  • Volume Visualization

    Adjusts attributes for multi-volume visualization.

  • Volume Wrangle

    Runs a VEX snippet to modify voxel values in a volume.

  • Volume from Attribute

    Sets the voxels of a volume from point attributes.

  • Voronoi Fracture

    Fractures the input geometry by performing a Voronoi decomposition of space around the input cell points

  • Voronoi Fracture Points

    Given an object and points of impact on the object, this SOP generates a set of points that can be used as input to the Voronoi Fracture SOP to simulate fracturing the object from those impacts.

  • Voronoi Split

    Cuts the geometry into small pieces according to a set of cuts defined by polylines.

  • Vortex Force Attributes

    Creates the point attributes needed to create a Vortex Force DOP.

  • Whitewater Source

    Generates emission particles and volumes to be used as sources in a Whitewater simulation.

  • Wire Blend

    Morphs between curve shapes while maintaining curve length.

  • Wire Capture

    Captures surfaces to a wire, allowing you to edit the wire to deform the surface.

  • Wire Deform

    Deforms geometry captured to a curve via the Wire Capture node.

  • Wire Transfer Shape

    Transfers the shape of one curve to another.

  • Wireframe

    Constructs polygonal tubes around polylines, creating renderable geometry.