Houdini 20.0 ノード LOPノード

Render Settings

UsdRenderSettings Primを作成/編集します。このPrimには、シーンをレンダリングするための全般的な設定を格納します。

On this page
Since 18.0

概要

  • UsdRenderSettings Primには、レンダリングされるファイル/バッファを表現したUsdRenderProduct Primsのリスト(レンダリングしたい Purpose を指定)だけでなく、シーンをレンダリングするための全般的なレンダー設定を格納します。

  • Render Settings Primsは、シーングラフツリー内の/Render下のどこかになければなりません。

Primsの作成 vs. 編集

このノードは、 USD Primsを直接的に作成または編集するノード のクラスに属します。 このようなノードは、 Createモード または Editモード で動作します。 このモードは、 Create Primitives チェックボックスまたは Create/Editポップアップメニュー で制御します。 Createモードでは、このノードは新しいPrimsを作成します。 Editモードでは、このノードは、既存のPrim上のアトリビュートを変更します。 Editモード には2つのバリエーションがあります。 Edit は、houdini:editableアトリビュートがfalseに設定されているPrimsを変更しません。 Force Edit は、このアトリビュートの有無や値に関係なくPrimを変更します。 このアトリビュートは、Configure Primitives LOPを使用してPrim上に設定することができます。

USDアトリビュートに該当したパラメータの左側には、このノードがアトリビュートを編集する 方法 を制御するためのポップアップメニューが付いています。

それだけでなく、接続可能なUSDアトリビュート(つまり、inputs:ネームスペース内にあるアトリビュート)には、アトリビュート入力とそのソース間の接続を切断できるメニュー項目があります。

ポップアップのメニュー項目

意味

Set or Create

既にアトリビュートが存在しているかどうかに関係なく、指定した値をそのアトリビュートに設定します。

Set If Exists

既にアトリビュートが存在している場合にのみ、指定した値をそのアトリビュートに設定します。

このモードを使用することで、正しいタイプのPrimsにのみアトリビュートを設定することができます。 例えば、UsdGeomSphere Primsのみがradiusアトリビュートを持つようにしたい場合です。

Block

アトリビュートが存在していないように見せかけるので、これはデフォルト値を取得します(アトリビュートがPrim上にまだ存在していない場合、これは何もしません)。

Disconnect Input

アトリビュート入力とそのソース間の接続を切断します。 入力接続はアトリビュート値よりも優先度が高いので、入力を接続すると、アトリビュート値が効果を持つようになります。

Do Nothing

このパラメータを無視し、どのようにしてもアトリビュートを作成も変更もしません。

パラメータ

Sampling Behavior

このノードがクックされると、現行時間にただ1個のUSDタイムサンプルを生成するのではなく、たくさんのUSDタイムサンプルを生成することができます。 これは、このノードの後にCache LOPを接続することと同様ですが、こちらの方が非常に高速に評価され、他のノードからのデータをキャッシュ化しません。 これによって、以降のすべてのノードも時間依存にしてしまうノード時間依存を導入することなく、アニメーションデータをUSDで作成することができます。 その結果、一部のLOPネットワークの再生パフォーマンスを大幅に向上させることができます。

どのサンプリングモードでも、このノードのパラメータが時間と共に可変しない、且つ、ステージ上の他のタイムサンプルデータに依存していない場合、 呼応するアトリビュートに対して単一デフォルト値のみがUSD内で生成されます。 時間と共に可変するパラメータに対してのみUSDタイムサンプルが生成されます。

Sample Current Frame

現行時間に対して単一タイムサンプルが作成されます。

Sample Frame Range If Input Is Not Time Dependent

このノードの入力が時間依存の場合、このノードは、Sample Current Frameモードと同様の挙動をします。 そうでない場合、このノードは、Sample Frame Rangeモードと同様の挙動をします。

Sample Frame Range

Start/End/Inc パラメータを使用して、このノードのパラメータが評価される時間に対して複数の時間を生成し、それらの各時間においてアトリビュート毎にUSDタイムサンプルが作成されます。

Start/End/Inc

Sampling BehaviorSample Frame Rangeの場合、このパラメータは、このノードで生成されるベースタイムサンプルの数と間隔を制御します。 このパラメータのデフォルト値は、@fstart@fend@fincです。 これらの値は、Houdiniを操作する時のグローバルHoudiniアニメーション設定の開始フレーム、終了フレーム、ステップサイズに相当します。 ROPノードを使用してフレーム範囲を生成した場合、これらの値は、実行したそのROPノードで指定された開始フレーム、終了フレーム、ステップサイズに相当します。 このデフォルトは、ディスクに書き出されるUSDファイルに、(Houdiniアニメーション設定に関係なく)ROPで指定されたフレーム範囲ちょうどのタイムサンプルを含めます。

Subframe Sampling

このノードで生成されたプライマリサンプル毎に、これらのパラメータは、そのプライマリサンプル時間付近に追加でサンプルを生成させることができます。 これは、プライマリサンプル時間だけでなく、カメラシャッターの開閉時間ちょうどにも正確なデータが存在することを保証するために非常によく使用します。

Shutter

プライマリサンプル時間を基準にシャッターの開閉時間を指定するのに使用されるメソッドを制御します。

Specify Manually

Shutter Open/Close パラメータの値で、プライマリサンプル時間を基準とした正確なオフセット値を指定します。

Use Camera Prim

Camera Prim パラメータで、シャッターの開閉時間が抽出されるカメラPrimのシーングラフパスを指定することで、プライマリサンプル時間を基準としたオフセット値を指定します。

Shutter Open/Close

Shutter モードがSpecify Manuallyの場合、ここの2つのオフセット値がプライマリサンプル時間に追加され、シャッターの開閉時間が指定されます。 シャッターの開時間は0以下に、閉時間は0以上に設定してください。

Camera Prim

入力ノードのステージ上のカメラPrimのシーングラフパス。 このPrimからShutter Open/Closeのアトリビュート値が読み込まれます。

Samples

プライマリサンプル毎に作成するサブフレームサンプルの数。 これらのサンプルは、シャッターの開時間から閉時間の間で均等に分布します。 このような均等な分布は、ちょうどプライマリサンプル時間にサンプルが作成される場合と作成されない場合があることに注意してください。

Always Include Frame Sample

このオプションを有効にすると、ちょうどプライマリサンプル時間にサンプルを作成させることができます。 シャッター開時間とシャッター閉時間のどちらの Samples 値も既にプライマリサンプル時間でサンプルが配置されている場合、このオプションを有効にしても何の効果もありません。 そうでない場合、このオプションによって、追加でサンプルが作成されます。 つまり、プライマリサンプルあたりの実際のサンプル数は、 Samples で指定されたサンプル数よりも多くなる可能性があります。

Action

このノードが新しいPrimsを作成するのか、または、既存のPrimsを編集するのかどうか。 さらに、Force Editオプションを選択することで、このノードがPrims上のhoudini:editableアトリビュートを無視し、指定されたアトリビュートを常に編集するようにすることができます。 これは、houdini:editableアトリビュートがfalseに設定されたPrimsに対して警告を出してアトリビュートを設定しないEditモードとは対照的です。

Primitive Path

Createモードでは、これは、Prim(s)を作成するシーングラフ内の場所を制御することができます。

デフォルトは通常では/$OSになっています。 これは、ノードと同じ名前でルートレベルにPrimを作成します(例えば、/tube1)。 このデフォルト値は、名前の干渉を回避するのに役立ちますが、整理する観点では良くないです。 Primsを作成する時は、 Primitive Path が良い値になるように変更することを忘れないでください。

例えば、モデルを作成したノードの後でそのモデルに名前を付けるのではなくて、モデル内のジオメトリの後に名前を付けるようにしたいのであれば、/Modelsブランチ下にモデルを配置すると良いでしょう。

“Create Primitives”セクションには、新しいPrim(s)の作成方法に関する基本的なコントロールが含まれています。

Primitives

Editモードでは、このノードには Primitive パラメータが表示されます。 このパラメータには、ノードが作用するPrim(s)を指定することができます。 テキストボックスの隣にある選択ボタンをクリックすることで、 Scene Graph Tree からPrimsを選択することができます。 コレクション内のすべてのPrimsのマッチングといった高度なマッチングには、プリミティブパターンも使用することができます。

Initialize Parameters For Edit

Editモードでは、このノードが何も変更を適用しないようにするために、すべてのコントロールメニューパラメータの状態をDo Nothing変更します。 さらに、最初の Primitives マッチから各プロパティの現行値を取得し、それに該当するパラメータの値を同じに設定します。 つまり、パラメータのコントロールメニューをSet or Createモードに変更すると、そのプロパティに現行値が設定されるので、新規に値を設定するよりも既存の値に変更を適用する方が簡単です。

Create Primitives

このセクションは、ノードがPrimsを作成している時にのみ表示されます。

例:

  • 空っぽのステージ上で/world/objects/cube1に新しくCube Primを作成したい場合: Primitive Specifier を“Define”、 Parent Primitive Type を“Xform”に設定します。

  • /world/objects/sphere1にあるSphereのradiusをオーバーライドしたい場合: Primitive Specifier を“Over”、 Parent Primitive Type を“None”に設定します。これによって、既存の親PrimsのPrimタイプは、このノードによって変更されないようにすることができます。

Primitive Count

作成するPrimsの数。

Primitive Kind

作成されるすべてのPrimsをこのKindに設定します。

Primitive Specifier

新しくPrimsを作成する時に使用するUSDオペレータ。

Define

完全に新規でPrimを作成します。まったく新しいPrimを作成したい場合、または、既存のPrimを置換したい場合に、これを使用します。

Over

既存のPrimをオーバーライドします。このPrim上で明示的に作成されていないアトリビュートは、下位レイヤーの既存のPrimから値が取得されます。

Class

Primクラスを定義します。通常では、これは、よほどUSDを使い込んでない限りは必要ありません。

Class Ancestor

SpecifierDefineまたはOverの場合、このパラメータは、いくつかの親PrimsのSpecifierをClassで編集します。 これによって、別々に2個のノードを使用することなく、Class内でOverまたはDefineを作成するのが簡単になります。 SpecifierClassの場合、Prim階層全体が既にClass Primsとして編集されているので、このパラメータは無効です。

Parent Primitive Type

Primitive Paths のパスに何も親が存在しない場合、このノードが自動的に親を作成します。この場合、このタイプの親ノードを作成します。

Standard

Products

レンダリングされる出力を表現したUsdRenderProduct Primsのパスのリスト。 明示的に何もRender Productを指定しなかった場合、デフォルトでは、レンダラーはこのノードのレンダー設定を使ってRGB画像をデフォルトディスプレイまたは画像名へ出力します。

Included Purposes

Purpose トークン(UsdGeomImageablerender(最終レンダー)、proxyguideなど)のリスト。 これらのトークンのどれかに設定されたPurposeを持ったジオメトリのみがレンダラーに送信されます。 default Purposeは、明示的にPurposeが設定されていないすべてのジオメトリ用のPurposeなので、通常ではdefaultを含めると良いでしょう。

(これは、どのジオメトリが存在しているかを示すためのステートメントなので、Render Product単位でPurposeを指定することはできません。)

Material Binding Purposes

マテリアルのバインドを解決する時に考慮されるマテリアルPurposeトークンのリスト。

Camera

シーンのレンダリングに使用するUSDカメラPrim(UsdGeomCamera)のパス。

Resolution Mode

USD Cameraの Aperture Aspect Ratio を使用して、自動的に解像度の寸法を設定します。

計算されるパラメータはエクスプレッションを使用して設定されますが、誤って編集してしまわないようにロックされます。

Manual

解像度の高さと幅の値を設定します。

Set Width, Compute Height from Aperture

幅を設定し、高さはその幅とカメラのアスペクト比から計算されます。

Set Height, Compute Width from Aperture

高さを設定し、幅はその高さとカメラのアスペクト比から計算されます。

Resolution

出力画像の水平サイズと垂直サイズ(単位はピクセル)。

Instantaneous Shutter

カメラの Shutter Close パラメータを Shutter Open 時間と同じになるようにオーバーライドして、ゼロ幅のシャッター間隔を生成します。 これがモーションブラーを無効にするための便宜的な方法です。

Aspect Ratio Conform Policy

出力画像のアスペクト比( Resolution の幅を高さで割った値)がカメラの絞りのアスペクト比(カメラのアトリビュートで制御)に一致しなかった場合の挙動。 これによって、カメラを切り替えた時に標準レンダラーが妥当な挙動をするようにすることができます。

Expand Aperture

必要に応じて、画像に合うようにカメラの絞りを広げます。

Crop Aperture

必要に応じて、画像に合うようにカメラの絞りをクロップします。

Adjust Aperture Width

必要に応じて、画像に合うようにカメラの絞り幅を変更します。

Adjust Aperture Height

必要に応じて、画像に合うようにカメラの絞り高さを変更します。

Adjust Pixel Aspect Ratio

カメラに合うように画像のアスペクト比を変更します。

Data Window NDC

出力画像全体のうち、このウィンドウ内だけをレンダリングするようにレンダラーに指示します。 このウィンドウは、正規化された0から1の範囲の値でminX, minY, maxX, maxYで指定します。 0, 0座標は左下、1, 1座標は右上、0.5, 0.5座標は中心を示します。 デフォルトは0, 0, 1, 1(クロップなし)です。

Note

マイナス の値を使用することができます。 例えば、-0.1, -0.1, 1.1, 1.1は各辺で10%分オーバースキャンされます。

このウィンドウを使用することで、一時的にレンダリングをテスト用に小さい領域に クロップ することができます。

そのデータがウィンドウ内に 完全に収まっている 場合のみピクセルがレンダリングされます。

正規化された座標は、 Aspect Ratio Conform Policy で調整された の画像にマッピングされます。

Pixel Aspect Ratio

画像 ピクセル ( 画像自体 ではありません )のアスペクト比(幅/高さ)。 デフォルトの1.0は、正方形ピクセルを意味します。

Karma

Global

Rendering

Rendering Engine

レンダリングエンジンを選択します。

CPU

完全にCPU上で実行します。このエンジンは完全にソフトウェア制御であるので、 一般的には 機能が多くて出力結果が正しいですが、XPUエンジンと比べてはるかに遅いです。

XPU

XPUエンジンは、利用可能なCPUとGPU(グラフィックカードハードウェア)のリソースを使用します。 このエンジンは、GPUで可能な処理の制限を継承しているので、 一般的には 機能面でCPUエンジンに遅れていますが、CPUエンジンよりもはるかに高速です。

Image Mode

画像のレンダリング方法を決めます。

progressive

画像全体が同時進行で徐々にレンダリングされていきます。 このモードでは、レンダリングが完了するのを待たずに、画像全体がどんな感じに見えるのかを把握することができます。

bucket

各バケットがレンダリングを完了した後に次のバケットに進みます。 このモードは、画像全体がレンダリング完了するのを待たずに、最終品質画像がどのように見えるのかを把握することができます。

Note

IPRでレンダリングする場合、KarmaはIPRプレビューパスが完了するまでプログレッシブレンダリングを使用します。

Progressive Passes

バケットモードでレンダリングする場合( Image Mode を参照)、ここには、バケットモードに切り替える前に画像に対して実行するプログレッシブパスの数を指定します。

Bucket Size

Karmaはレンダリングをするために画像を複数のバケットに分割します。 これは、その正方形バケットの1辺の長さ(単位はピクセル)です。 デフォルトの32は、32 x 32ピクセルのバケットが指定されます。 スレッドはバケット単位で動作するので、部分的に負荷の大きいバケットが数個しかない時にバケットサイズを小さくすると役に立つ場合があります。 そうすることで、負荷の高い領域をもっと多くのスレッドに分割することができます。

例えば、画像内のほとんどが空っぽなものの、1個の32×32バケット内に収まる遠方のオブジェクトが存在した場合、そのオブジェクトは1スレッドのみを使用してレンダリングされることになります。 16×16バケットに切り替えれば、そのオブジェクトが4個のバケットに分割され、4つのスレッドでそのオブジェクトを処理させることができます。

バケットサイズを変更しても結果が変わらないのが理想ですが、Karmaは現行バケット内のピクセルからバリアンス(分散)を測定するため、 バケットサイズを例えば4とか低いサイズに下げると、4 x 4 = 16ピクセルしか見なくなるので、Karmaは非常に精度の悪いバリアンス評価を行なう傾向になります。 これによって正しくないバリアンス評価が原因でピクセルレンダリングが途中で終了してピクセルをブラックとして表示してしまう可能性があります。

Bucket Order

最初にレンダリングされるバケットを指定します。指定可能な値:

middle

バケットのレンダリングを画像の中央から開始します。

top

バケットのレンダリングを画像の上側から開始します。

bottom

バケットのレンダリングを画像の下側から開始します。

left

バケットのレンダリングを画像の左側から開始します。

Note

MPlayにレンダリングする場合、ユーザはクリックによって、その領域にレンダリングを集中させることができます。

Sampling

Pixel Samples

各ピクセルから送信される光線サンプルの数。 光線サンプルが多いほど、ノイズの少ない画像が得られます。 別名 Primary Samples とも呼びます。

Path Traced Samples

Convergence ModePath Traced の時に使用される各ピクセルから送信される光線サンプルの数。 光線サンプルが多いほど、ノイズの少ない画像が得られます。

Image Blur

これを無効にしても、Karmaは引き続きVelocityを計算しますが(そして、そのVelocityをAOVに格納することができます)、 シャッターが開いた時にすべてのカメラ光線を送信するので、その画像には一見して何もモーションブラーはかかりません。 これは、単純にモーションブラーが不要な場合に役立ちます。 例えば、ポスト/コンポジットでモーションブラーを追加したいけれども、レンダラーではモーションブラーを認識して適切なモーションベクトルをAOVに保存する必要がある場合です。

Screendoor Limit

光線が部分的に不透明なオブジェクトを通過する時にシェーディングされる透明サンプルの数。 この数を増やすと、部分的に不透明なオブジェクト内のノイズが少なくなり、通常では Pixel Samples , Volume Step Rate , Min Ray Samples , Max Ray Samples を増やすよりも負荷が少ないです。 ただし、このパラメータは、 Indirect Sources からのノイズには何の効果もありません。

Convergence Mode

Path Traced に設定すると、バウンスあたり最大1本の間接光線が生成されます。 Automatic に設定すると、間接光線の数は、初期ノイズ推定量、ターゲットノイズ閾値、最大カメラ光線数に基づいて計算されます。 さらに Automatic モードでは、直接照明のサンプル数もノイズ推定量に基づいて調整されることに注意してください。

Russian Roulette Cutoff Depth

光線処理数に基づいて確率的に間引かれ始める間接光線の深さ。

Light Sampling Mode

Karmaにライトの均一サンプリングを実行させるのか、または、レンダリングでライトツリーを使用するのかどちらかを指定します。 ライトツリーは、膨大な数のライトを持ったシーンに対して非常に高速にレンダリングすることができます。

一部のライトはライトツリーに追加することができず、すべてKarmaでサンプリングされます:

  • Dome Lights

  • Distant Lights

  • Point Lights

  • ライトフィルターを持ったライト

  • シェイプコントロールを持ったライト(例えば、スポットライト)

Light Sampling Quality

これは、すべてのライトのサンプリング品質を改善するためのグローバルコントロールです。 これは、個々のライト品質コントロールの乗数として作用します。 サンプリング品質を上げると、直接照明サンプリングだけでなく、シャドウ/オクルージョンの品質も良くなります。

Indirect Guiding

Enable Indirect Guiding

これを有効にすると、Karmaは、BSDFサンプリング分布に依存しない代わりに、レンダリング中にすべてのシェーディングポイントからラディアンス(放射輝度)情報を収集し、その情報を使用して間接バウンス光線をガイドします。 これによって、(コースティクスやほぼ間接照明といった)“難しい”ライティングを改善することができますが、若干オーバーヘッドが発生します。 これを使用する前に、Direct系AOVとIndirect系AOVをレンダリングしてノイズの箇所を確認すると良いでしょう。 そのノイズの多くが直接照明によって発生している場合、パスガイドを有効にしてもほとんど意味がありません。

Indirect Training Samples

Karmaがラディアンス(放射輝度)情報を収集するプライマリサンプルの数。 0に設定すると、Karmaは、レンダリング全体を通じて情報を収集し、ガイドフィールドを調整します。 0より大きい場合、Karmaは、指定したサンプル数までのみそれを実行し、残りのサンプルは、ガイドフィールドを使用してレンダリングされますが、それ以上の調整は行なわれません。

Indirect Guiding Spatial Filter

トレーニング中にパスガイドサンプルの空間的なコンポーネントにブラーを適用します。 これを上げることで、効率性が悪くなるものの、グリッド状の乱れを軽減することができます。

Houdini20.0で廃止されました。

Indirect Guiding Directional Filter

トレーニング中にパスガイドサンプルの直接的なコンポーネントにブラーを適用します。 これを上げることで、効率性が悪くなるものの、グリッド状の乱れを軽減することができます。

Houdini20.0で廃止されました。

Indirect Guiding Deterministic

レンダリング負荷を上げてまで決定論的な結果の生成を試みます。 実行の度にジオメトリに少しの違いが生じるので、マルチスレッドのレンダリングでは完全な決定論は不可能であることに注意してください(法線、変位、サブディビジョンの事前計算などマルチスレッド処理がこれに当てはまります)。 通常では、これは非ガイドレンダリングに影響を与えませんが、最小の違いがガイドフィールドの構築方法に影響を与える可能性があるので、間接ガイドではバタフライ効果が発生してしまう可能性があります。 これによって、間接光線が異なる方向に進んで、次の反復でさらに違いが発生してしまいます。

Indirect Guiding Components

Indirect Guiding が有効な時にサンプリングのガイドを使用するBSDFコンポーネントのリスト。

Indirect Guiding Render From Scratch Post-Training

間接ガイドのトレーニングが完了した時にAOVsをクリアして、トレーニングフェーズ中に蓄積されたピクセル値が最終レンダリングに寄与しないようにします。

Shading

Ray Bias

サーフェスからの セカンダリ光線 がシーン内の他のオブジェクトに交差するかどうかをテストする際に使用される最小距離。 この距離は、サーフェスからセカンダリ光線の方向に沿って測定されます。 この Ray Bias 距離内にあるオブジェクトは無視されます。

Automatic Ray Bias

理想的な Ray Bias を自動的に計算します。 Karma CPUでは、自動バイアスは、プロシージャルメッシュ、部分的に不透明なサーフェスとNested Dielectrics(入れ子状の絶縁体)に対する継続的な光線を除くすべての光線に適用されます(“Ray Bias”プロパティは、これらの場合でも引き続き使用されます)。 Karma XPUでは、自動バイアスは、ポリメッシュパスバウンス光線とポリメッシュシャドウ光線のみに適用されます。 それ以外のすべての光線(例えば、SSS、ラウンドエッジ、Nested Dielectrics、ポイント、カーブなど)では、引き続き“Ray Bias”プロパティが使用されます。

Shading Quality Multiplier

シェーディング品質に対する乗数。 これは、テクスチャとシェーディングの面積評価で使用されます。

Constrain by Maximum Roughness

GGX BSDFsのRoughnessパラメータがパストレーシングの光線チェーンを伝搬した最大Roughness値でクランプされます。 このオプションを有効にすると、若干精度を落とすことになりますが、(特に、光沢のある表面が粗いスペキュラーの表面によって反射される場合において)間接スペキュラ内の多くのノイズを除去することができます。

Color Limit

非常に明るい光源のサンプリング不足によって引き起こされる“蛍”の出現を軽減するためにシェーディングサンプルがLPE画像平面に寄与できる最大値。

Note

この値を下げると、シーン内の光量が全体的に減少してしまいます。

Shared Color Limit

有効にすると、間接バウンスは Color Limit パラメータの値を使用し、 Indirect Color Limit パラメータを無視します。

Indirect Color Limit

間接バウンスのみに適用されるカラー制限。

Note

Shared Color Limit トグルが有効になっている場合、このパラメータは無視されます。

Enable Depth of Field

被写界深度レンダリングを有効にします。

Automatic Headlight Creation

シーンにライトが存在しなかった場合、デフォルトでヘッドライトが作成されます。 これを無効にしたいのであれば、このチェックボックスを外してください。

Ambient Occlusion

Disable Lighting

すべてのライティングとマテリアルの評価を無効にし、表示カラーのみを使ってプリミティブのシェーディングを行ないます。

Override Lighting

シーン内のライティングをオーバーライドします。 いくつかのオプションが用意されています:

  • Off: USDステージで定義されている通りにライティングを使用します。

  • Emissive Objects: すべての光源を無効にし、発光オブジェクト(ジオメトリライト)のみを有効にします。

  • Headlight: すべての光源を無効にし、ヘッドライトを作成します。

  • Dome Light: すべての光源を無効にし、ドームライトを作成します。

Headlight AO Samples

ヘッドライトモードでレンダリングする時、シェーディングあたりこの数だけアンビエントオクルージョンサンプルを実行します。

Headlight AO Distance

アンビエントオクルージョンシェーディングを有効にしてヘッドライトモードでレンダリングする時、この距離がオクルージョンテストに使用されます。 この距離が短いほどシェーディングが高速になりますが、シェーディング精度が悪くなります。

Headlight Fog Color

ライティングが無効な時に使用されるDepth Cueフォグのカラー。

Headlight Fog Alpha

ライティングが無効な時に使用されるDepth Cueフォグのアルファ。

Headlight Fog Distance

ライティングが無効な時に使用されるDepth Cueフォグの近/遠距離。 遠距離が近距離より短い場合、フォグが無効になります。

Dicing

Dicing Camera

複雑なサーフェスをDicing(賽の目)する際に使用されるカメラを指定します。 これによって、ビューイングカメラを動かしても、サーフェスに対して整合性の取れたDicingを行なうことができます。

Offscreen Quality

このパラメータは、カメラから直接見えないジオメトリのシェーディング品質スケール係数を制御します。 視界外のジオメトリ(セカンダリ光線から映るジオメトリ)に関しては、Karmaはジオメトリとビューフラスタム境界との角度に基づいてシェーディング品質を滑らかに下げます。 値を下げるほどパフォーマンスが良くなります。 特に、カメラが近くのジオメトリのディスプレイスメント境界内に入っているシーンでは、カメラから見えないジオメトリをカメラから直接見えるジオメトリよりも粗くDicingできるようになるのでパフォーマンスが良くなります。

Dicing Quality Scale

このパラメータは、すべてのオブジェクトのDicing(賽の目)品質のグローバル乗数です。

Image

Image Filters

Image Filtersは、フィルタリングされたピクセルをポスト処理して最終画像を生成します。 このパラメータには、フィルターとその引数のJSONエンコードのリストを含んだ文字列を指定します。 通常では、この値を手動で作成する必要はなくて、Karma LOPによってフィルター関連のパラメータの値から計算されます。 詳細は、Karmaフィルターを参照してください。

Pixel Filter

ピクセルに対するサンプルの分布を指定します。 Boxフィルターは、個々のピクセルの内側に対してランダムにサンプルを分布します。 Gaussianフィルターは、ピクセルの中心を基準とした円盤内に(均一な分布の代わりに)Gaussian分布でサンプルを分布します。

Pixel Filter Size

これは Pixel Filter のサイズです。 フィルターサイズが1.8のGuassianフィルターは、フィルターサイズが2.0のGaussianフィルターよりも若干ぼかしが弱くなります。

Sample Filter

サンプルフィルターを使用することで、サンプルを修正した後にそのサンプルをピクセルフィルターに送信することができます。

このパラメータには、フィルターのリストを指定します。 これらのフィルターは、JSONリストとして指定されます。

Pixel Oracle

レンダリングする時、Pixel OracleはKarmaにどのピクセルを追加でサンプリングする必要があるのか、どのピクセルが集中しているのかを伝えます。 このパラメータは、使用するPixel OracleをKarmaに伝えます。

uniform

各ピクセルに光線を均等に分布させます。各ピクセルは常に同じ数の光線サンプルを受け取ります。

variance

レンダリング画像内の分散に基づいて光線を分布させます。

Use Background

“Off”はBackground IPR Filterを無効にします。 “Auto”はIPRでのみ有効にします。 “On”はIPRとオフラインレンダリングの両方で有効にします。

Background IPR Filter

背景画像プレビューやシャドウと他のホールドアウトエレメントの仮コンプに特化したImage FiltersのJSONリスト。

Advanced

Cache Limit

固定サイズのキャッシュ(karma:global:cachesize)を使用するのか、物理メモリの割合(karma:global:cacheratio)を使用するのか指定します。

Cache Memory Ratio

Karmaが統一キャッシュに使用する物理メモリの割合。

例えば、vm_cacheratioがデフォルトの0.25で、物理メモリが16GBであれば、 Karmaは統一キャッシュに4GBを使用します。

この統一キャッシュには、レンダリングで使用される動的でアンロード可能なデータ(以下のデータを含む)が格納されます:

  • 2D .ratテクスチャタイル

  • 3D .i3dテクスチャタイル

  • 3D .pcポイントクラウドページ(メモリに事前ロードしない時)

Note

この値は、IPRではなくてオフラインレンダリングでのみ使用されます。

Cache Size (MB)

統一シェーディングキャッシュの明示的なメモリ上限。 これは廃止され、代わりに Cache Memory Ratio を使用してください。

Note

この値は、IPRではなくてオフラインレンダリングでのみ使用されます。

Override Object Settings

通常では、Render Settings LOPで指定したジオメトリ設定がオブジェクトのデフォルト値を決めます。 各オブジェクトはそのデフォルト値を上書きすることができます。

このパラメータには、Render Settingsから値を取得するオブジェクトプロパティ名のパターンを指定し、オブジェクト毎の設定を上書きします。 例えば、パターンに“diffuselimit”を設定すると、Render Settings LOPで指定された値ですべてのオブジェクトのDiffuse Limitが上書きされます。

Random Seed

これは、レンダリングで使用されるランダムシードです。

Cancel Render on Missing Texture

このオプションを有効にすると、テクスチャマップの欠落に遭遇した時にKarmaはエラーでレンダリングを停止します。

Cancel Render on No Working GPU Devices

このオプションを有効にすると、動作するGPUデバイスが見つからなかった時にKarmaはエラーでレンダリングを停止します。

Export Components

エクスポート用に計算されるシェーディングコンポーネント名をスペースで区切ったリスト。 マテリアルで新しいコンポーネントラベルを定義していた場合、それらのラベルをこのリストに追加することで、コンポーネント単位のエクスポート平面にそれらのラベルをエクスポートすることができます。 いくつかのコンポーネントを使用しないのであれば、リストからそれらを削除することでレンダリング効率を上げることができます。

PBRライトエクスポートは、このリストがすべてである(つまり、シェーダで生成されるすべてのコンポーネントがリストされている)と想定します。 リストに挙げられていないコンポーネントがあった場合、ライトエクスポートは、それらのコンポーネントからの照明を見逃してしまいます。

Diffuse Components

ディフューズバウンスのような挙動をするコンポーネントタイプをスペースで区切ったリスト。 これは、光線タイプに基づいて使用される反射スコープに影響し、使用するバウンス上限にも影響します。 カテゴリ化されていないコンポーネントタイプは、反射とみなされます。

Refract Components

屈折バウンスのような挙動をするコンポーネントタイプをスペースで区切ったリスト。 これは、光線タイプに基づいて使用される反射スコープに影響し、使用するバウンス上限にも影響します。 カテゴリ化されていないコンポーネントタイプは、反射とみなされます。

Volume Components

ボリュームバウンスのような挙動をするコンポーネントタイプをスペースで区切ったリスト。 これは、光線タイプに基づいて使用される反射スコープに影響し、使用するバウンス上限にも影響します。 カテゴリ化されていないコンポーネントタイプは、反射とみなされます。

SSS Components

サブサーフェススキャタリングのような挙動をするコンポーネントタイプをスペースで区切ったリスト。 これは、光線タイプに基づいて使用される反射スコープに影響し、使用するバウンス上限にも影響します。 カテゴリ化されていないコンポーネントタイプは、反射とみなされます。

IPR

IPR Inc Random

Solarisビューポートにレンダリングする時、これは、レンダリングの度に新しいランダムシードでレンダリングを開始します。

IPR Bucket Size

IPRレンダリングの初期バケットサイズ

IPR Denoise Bucket Size

バケットがレンダリングされていくにつれて、その粗いバケットサイズが小さくなっていきます。 ここでは、Karmaが画像に対してデノイズフィルターを実行するバケットサイズを指定します。

IPR Reserve Threads

IPRモードでレンダリングする時に、他のHoudiniタスク用にこの数だけのスレッドを確保します。

IPR Continuous Dicing

IPRモードでレンダリングする時、この設定は、ビューのトランスフォームが変わった時にKarmaがディスプレイスメントとサブディビジョンサーフェスを再Dicingするかどうかを制御します。 ジオメトリを継続的に再Dicingすると、レンダリングの開始時間が大幅に長くなってしまう可能性がありますが、より正確な結果が得られます。

Texture Baking

Map Type

実行するテクスチャベイクのタイプ。 UDIMとPTexのどちからのテクスチャベイクを選択することができます。

Object ID

テクスチャベイクで展開されるオブジェクトのオブジェクトID。 テクスチャベイクは、シーン内でタイプ別(低解像度、ケージ、高解像度)に該当するオブジェクトIDを持つオブジェクトを検索し、そのタイプに応じてオブジェクトを割り当てます。 オブジェクトはタイプ毎に1つだけ存在する必要があります。

Tile

このシーンがテクスチャベイクをするタイル番号。 UDIMテクスチャベイクの場合、この番号はUDIMインデックス(1001から9999)です。 PTEXテクスチャベイクの場合、フェースは面積が大きい順にページ分割されたグリッド上に配置されます。 タイル番号は、現在どのページがベイクされているのかを示します。

PTex Minimum Resolution

PTexテクスチャベイクを行なう時の単一Ptexフェースの最小解像度。

PTex Maximum Resolution

PTexテクスチャベイクを行なう時の単一Ptexフェースの最大解像度。

PTex Small Face Percent

PTex Relative Scaling と併せて使用します。 相対スケール内で最小解像度未満の解像度を持つ四角形のおおよその数を指します。 この値は、各フェースのおおよその長さ/幅に基づいた推定値にすぎません。

PTex Relative Scaling

PTexの相対スケールを有効にするのに使用します。 相対スケールは、メッシュのサイズと Ptex Small Face Percent に基づいて、レンダリングされるPTexフェースの解像度の調整を試みます。 相対スケールは、最小解像度未満の解像度を持つフェースの割合が Ptex Small Face Percent になるように最小解像度を調整します。

PTex Scale

PTexテクスチャベイクを行なう時のPTexフェース解像度のスケールを調整するのに使用されます。

Default Geometry Settings

Motion Blur

Enable Motion Blur

モーションブラーを有効にするかどうか。 Display Optionsダイアログでこれを変更したら、レンダラーを再起動する必要があります。

Velocity Blur

このパラメータでは、(Velocityがあれば)オブジェクトに対して実行する ジオメトリVelocityブラー のタイプを選択することができます。 トランスフォームブラー変形ブラー とは別に、時間と共に変化するポイントに保存されたアトリビュートを使って、ポイントの動きに応じたモーションブラーをレンダリングすることができます。 ジオメトリ内のポイント数が時間と共に変化する場合(例えば、ポイントが誕生したり死亡するパーティクルシミュレーション)、このタイプのブラーを使用してください。

フレーム間でジオメトリのトポロジーが変化する場合、Karmaはジオメトリを補間できなくて正しくモーションブラーを計算できなくなります。 そのような場合、元のジオメトリが変化しても整合性のあるvelocitiesaccelerationsのアトリビュートをモーションブラーに使用することができます。 流体シミュレーションのサーフェスがまさにそのよい例です。 この場合と他のタイプのシミュレーションデータでは、ソルバが自動的にVelocityアトリビュートを作成します。

Note

SolarisでのvelocitiesaccelerationsangularVelocitiesのアトリビュートは、SOPではそれぞれvaccelwに相当します。

No Velocity Blur

レンダラーでモーションブラーを許可するように設定しても、このオブジェクトに対してモーションブラーをレンダリングしません。

Velocity Blur

Velocityブラーを使用するには、ポイントVelocityを計算して、それをvelocitiesPointアトリビュートに保存しなければなりません。 レンダラーは、このアトリビュートが存在すれば、それを使用してVelocityモーションブラーをレンダリングします(レンダラーがモーションブラーのレンダリングを許可するように設定されていることが前提です)。 シミュレーションノード(例えばパーティクル系DOPs)は自動的にvelocitiesアトリビュートを生成します。 他にも、Point velocity SOPを使ってVelocityを計算して追加することができます。

velocitiesアトリビュート値の単位は、1秒あたりのHoudiniユニットです。

Acceleration Blur

加速度ブラーを使用するには、ポイント加速度を計算して、それをaccelerationsPointアトリビュートに保存しなければなりません。 レンダラーは、このアトリビュートが存在すれば、それを使用して複数セグメントの加速度モーションブラーをレンダリングします(レンダラーがモーションブラーのレンダリングを許可するように設定されていることが前提です)。 シミュレーション系ノードは自動的にaccelアトリビュートを生成することができます。 他にも、Point velocity SOPを使って加速度を計算して追加することができます。

Acceleration Blurがオンの時、ジオメトリに 角速度 アトリビュート(w)が存在すれば、急回転にもブラーがかかります。 これは、ベクトルアトリビュートであり、各コンポーネントは、X、Y、Z軸を基準とした1秒あたりのラジアンの回転速度を意味しています。

これを“Velocity Blur”または“Acceleration Blur”に設定すると、変形ブラーがオブジェクトに適用されなくなります。 これを“Acceleration Blur”に設定すると、karma:object:geosamplesプロパティを使用して、加速度サンプルの数を設定することができます。

Velocityアトリビュート(velocities)を使って線形モーションブラーを実行したVelocity Motion Blur。
Velocityの変化量を使ってもっと精度良く高速回転するブラーオブジェクトに対してモーションブラーを実行したAcceleration Motion Blur。
高速スピンする立方体のように、オブジェクトのスピンを扱ったAngular Acceleration Blur。

Motion Samples From Stage

モーションサンプルを明示的に選択しなくても、Karmaは、USDステージで作成されたサンプルに基づいてモーションサンプルを選択することもできます。 このオプションは、ステージ上で表現されているモーションを取り込むのにちゃんと正しいサンプル数を選択します。

この設定は、ジオメトリとインスタンスの両方のトランスフォームモーションサンプルと変形モーションサンプルのどちらにも適用されます。

Note

ステージ上のサンプルがカメラのシャッター時間と揃っていない場合、最初と最後のセグメントで(モーションが補間されず切り捨てられてしまうので)若干の補間の不具合が発生してしまう可能性があります。

Geometry Time Samples

シャッターオープン時間に対して 変形 モーションブラーをレンダリングする時に計算するサブフレームのサンプル数。 デフォルトは1サンプル(シャッター時間の開始のみのサンプル)で、デフォルトでは変形ブラーは ありません 。 高速に変形するジオメトリを適切にブラーさせたい場合、この値を2以上に上げなければなりません。

Note

この値は、レンダリングされるUSDファイルで利用可能なサブサンプル数で制限されます。 この例外で許可されているのは、USD Skelデフォーマです。

“Deformation”は、ジオメトリ(SOP)レベルでトランスフォームだけを参照したり、キャラクタやフレームに応じて形状が急速に変化するオブジェクトなどの実際のサーフェス変形を参照することができます。

1フレーム内で複雑に変形するオブジェクトには、Geo Time Samplesの数を上げる必要があります。

変形ブラーは、シャッター時間内の アトリビュート値の変化 もブラーさせることができます。 例えば、オブジェクトが移動した時にポイントカラーが急変化する場合、そのCdアトリビュートにブラーをかけることができます。

Geo Time Samplesの数を上げると、Karmaの使用メモリ量に 影響を与えてしまします 。 サンプル数が増える度に、Karmaはシャッター時間の間にサンプリングしている間はメモリ内にそれだけのジオメトリのコピーを維持しなければなりません。 レンダリングを最適化する時、滑らかなモーションの軌跡を生成するのに必要な最低限のGeo Time Samplesを調べることは良い考え方です。

Velocity motion blurが有効なオブジェクトでは、変形ブラーは無視されます。

Transform Time Samples

シャッターオープン時間に対して トランスフォーム モーションブラーをレンダリングする時に計算するサンプル数。 デフォルトは2サンプル(シャッター時間の開始と終了)で、1つのセグメントにブラーがかかります。

極端に速く移動したりと方向を変更するオブジェクトの場合、サブフレームでの方向の変更を取り込むためにサンプル数を上げる必要があります。

上図の例では、1フレーム内で発生した複雑な動きを正しくレンダリングするために40個のトランスフォームサンプルが必要です(1フレーム内でのこの変化量は、非常に稀で、説明をするために使用しただけです)。

トランスフォームブラーは、各オブジェクトのフレーム間のトランスフォームを補間することでブラーをシミュレーションしているので、計算が軽いですが、サーフェス変形を取り込みません。 変形ジオメトリのブラーを有効にするには、karma:object:geosamplesを上げます。

Instance Velocity Blur

インスタンスに対してモーションブラーを定義すると、プロトタイプで発生するモーションブラーだけでなく、各インスタンスのトランスフォームにもブラーをかけることができます。 このオプションは、各インスタンスのトランスフォームのモーションブラーの計算方法を制御します。 例えば、プロトタイプをパーティクルシステム上にインスタンス化した場合、Velocityブラーを使用してモーションブラーを計算したいことでしょう(パーティクル上のVelocityによってプロトタイプのトランスフォームにブラーがかかるようになります)。

No Velocity Blur

インスタンスの変形ブラーを使用して、トランスフォームのブラーを計算します。

Velocity Blur

Velocityブラーを使用したいのであれば、そのインスタンスは、ポイント上にVelocityアトリビュートが含まれたポイントインスタンサーである必要があります。

velocitiesアトリビュート値の単位は、1秒あたりのHoudiniユニット長です。

Acceleration Blur

Accelerationブラーを使用したいのであれば、そのインスタンスは、ポイント上にVelocityアトリビュートとAccelerationアトリビュートが含まれたポイントインスタンサーである必要があります。 レンダラーは、(存在すれば)このアトリビュートを使用して、複数セグメントのアクセラレーションモーションブラーをレンダリングします(レンダラーでモーションブラーが有効になっている場合)。 accelアトリビュートはシミュレーション系ノードで自動的に作成されますが、Point velocity SOPを使用して加速度を計算してaccelアトリビュートを追加することもできます。 このaccelアトリビュートは、SOPジオメトリがUSDに変換された時にaccelerationsに変換されます。

Instance Motion Samples

Accleration Blur または Deformation Blur を使用してインスタンスのモーションブラーを計算する場合、このパラメータには、そのモーションブラーで使用されるモーションセグメントの数を指定します。

Motion Blur Style

オブジェクトのモーションスタイルを指定します。

Rotation Blur (デフォルト)

オブジェクトを原点中心で回転させます。これは、オブジェクトをスピンさせるのに適しています。

Linear Blur

このモーションスタイルは、回転するオブジェクトの体積を維持せず、回転の円弧を描くモーションではなく直線的なモーションになります。 ピボットのトランスフォームなど特別な場合にのみ使用してください。 Linear Blurは、トランスフォームマトリックスの係数を線形補間して正しいブラーを表現します。

Volume Velocity Blur Scale

ボリュームに対してモーションブラー量を軽減または誇張する際に使用されるVelocity乗数。

Sampling

Diffuse Samples

間接ディフューズシェーディングの品質を指定します。 サンプル数1は、シェーディング計算あたり約1個の追加ディフューズサンプルに相当します。 サンプル数4は、シェーディング計算あたり約4個の追加ディフューズサンプルに相当します。

Reflect Samples

間接反射シェーディングの品質を指定します。 サンプル数1は、シェーディング計算あたり約1個の追加反射サンプルに相当します。 サンプル数4は、シェーディング計算あたり約4個の追加反射サンプルに相当します。

Refract Samples

間接屈折シェーディングの品質を指定します。 サンプル数1は、シェーディング計算あたり約1個の追加屈折サンプルに相当します。 サンプル数4は、シェーディング計算あたり約4個の追加屈折サンプルに相当します。

Volume Samples

間接ボリュームシェーディングの品質を指定します。 サンプル数1は、シェーディング計算あたり約1個の追加ボリュームサンプルに相当します。 サンプル数4は、シェーディング計算あたり約4個の追加ボリュームサンプルに相当します。

SSS Samples

間接サブサーフェススキャタリングシェーディングの品質を指定します。 サンプル数1は、シェーディング計算あたり約1個の追加サブサーフェススキャタリングサンプルに相当します。 サンプル数4は、シェーディング計算あたり約4個の追加サブサーフェススキャタリングサンプルに相当します。

Volume Step Rate

光線がボリュームを通過した時にそのボリュームをサンプリングする細かさを設定します。 ボリュームオブジェクトはボクセルと呼ばれる3D構造で構成されており、このパタメータの値は、次のサンプリングを実行する際に光線が通過するボクセル数を意味します。

デフォルト値は0.25で、4個のボクセル毎に1回のサンプリングが実行されることを意味します。 1の値はすべてのボクセルがサンプリングされ、2の値はすべてのボクセルが2回サンプリングされることを意味します。 つまり、この Volume Step Rate 値は、ピクセルサンプルと同様の挙動をし、ボリュームオブジェクトに対するサンプル総数の乗数として作用します。

Volume Step Rate を上げるとレンダリング時間が劇的に長くなるので、必要な場合にのみ調整するように注意してください。 また、デフォルト値の0.25よりも大きな値にするとボリュームノイズを軽減することができますが、1を超えた値ではそんなに結果が変わらなくなります。

Secondary Noise Level

Convergence Modeが“Automatic”に設定されている時に、間接バウンスで送信する間接光線の数を決めるノイズ閾値。 この閾値を下げると(例えば、0.001に設定)、理論上はもっと多くの間接光線が送信されてノイズが減りますが、“余分な”光線は Max Ray Samples パラメータによってほぼ相殺されることになります。 ノイズを減らす正しい方法は、この閾値を変更することではなく、ピクセルあたりのサンプル数を上げることです。

Variance Pixel Oracleを使用した場合、両方の閾値パラメータに同じ値を設定してください。 Variance Pixel Oracleの閾値を下げるほど、間接コンポーネントがすぐにその閾値に到達してあまり間接光線が送信されなくなるものの、 Variance Pixel OracleはBeautyパス内の最終ノイズ量がVariance Pixel Oracleの閾値より多ければ、負荷が大きいカメラ光線をもっと多く送信することを決めます。

Min Secondary Samples

コンポーネント毎のバリアンスアンチエイリアスで送信する光線の最小数。

Max Secondary Samples

コンポーネント毎のバリアンスアンチエイリアスで送信する光線の最大数。

Limits

Diffuse Limit

ディフューズ光線がシーンを伝搬できる回数。

Reflect LimitsRefract Limits と違って、このパラメータは、シーン内の全体のライトの量を増やし、グローバルイルミネーションの大部分に寄与します。 このパラメータを0より大きく設定すると、Diffuseサーフェスは、直接光源に加えて、他のオブジェクトからのライトも蓄積します。

この例では、 Diffuse Limit を上げて、最終画像の見た目に劇的な効果が出ています。 現実的な照明環境を模倣するには、 Diffuse Limit を上げる必要があることが多いです。 とはいえ、ライトの寄与度は通常ではDiffuseバウンス毎に小さくなるので、 Diffuse Limit を4よりも大きく上げても、シーンでの視覚的な忠実性の改善はほとんどありません。 さらに、 Diffuse Limit を上げると、ノイズレベルとレンダリング時間が劇的に増える可能性があります。

これは、すべての制限がサンプル毎に確率的に選択されるので浮動小数点値になっています。 そのため、例えば、 Diffuse Limit3.25に設定すると、光線の25%の Diffuse Limit が4、75%の Diffuse Limit を3に設定することができます。

Reflection Limit

光線がシーン内で反射できる回数。

この例では、2つの鏡の間に配置した被写体を使った典型的な“鏡のホール”のシナリオを載せています。

これは、実質的に無限に続く反射を作成しています。

このカメラ角度では、その反射制限が非常にわかりやすく、最終画像の精度に大きく影響していることがわかります。 しかし、ほとんどの場合では、その反射制限を巧妙に調整することで、シーン内の反射の数を減らすことができ、レンダリング時間を最適化することができます。

光源がオブジェクトで一度反射すると、それを直接反射と見なされることを覚えておいてください。 そのため、 Reflect Limit を0に設定しても、まだ光源のスペキュラー反射が見られます。

これは、すべての制限がサンプル毎に確率的に選択されるので浮動小数点値になっています。 そのため、例えば、 Diffuse Limit3.25に設定すると、光線の25%の Diffuse Limit が4、75%の Diffuse Limit を3に設定することができます。

Refraction Limit

このパラメータは、光線がシーン内で屈折する回数を制御します。

この例では、10個のグリッドすべてが1列に並んだ単純なシーンを載せています。

屈折のあるシェーダを適用することで、それらのグリッドを通じて、背景の夕焼けの画像を見ることができます。

このカメラ角度では、画像の精度を良くするためには、屈折制限をシーン内のグリッドの数に合わせなければなりません。 しかし、ほとんどのシーンでは、この数の屈折オブジェクトすべてが一列に並ばないので、最終画像に影響を与えずに屈折制限を下げることができます。 それと同時に、レンダリング時間が短くなります。

この Refract Limit は、オブジェクトの数ではなく、光線が通過しなければならないサーフェスの数を参照していることを覚えておいてください。

光源がサーフェスを一度屈折すると、それを直接屈折と見なされることを覚えておいてください。 そのため、 Refract Limit を0に設定しても、まだ光線の屈折が見られます。 しかし、シーン内のほとんどのオブジェクトは、最低でも2枚のサーフェスを持つので、その光源と直接屈折が最終レンダリングではあまりわからないことが多いです。

これは、すべての制限がサンプル毎に確率的に選択されるので浮動小数点値になっています。 そのため、例えば、 Diffuse Limit3.25に設定すると、光線の25%の Diffuse Limit が4、75%の Diffuse Limit を3に設定することができます。

Volume Limit

ボリューム光線がシーンを伝搬できる回数。これは Diffuse Limit パラメータと同じように動作します。

Volume Limit パラメータを上げると、よりリアルなボリューム効果が得られます。 これは、特にボリュームの一部のみが直接照明を受けている状況で顕著です。 さらに、ボリュームオブジェクトが他のオブジェクトからの間接照明を受けるためには、 Volume Limit パラメータを0よりも大きく設定しなければなりません。

Volume Limit を0より大きい値に設定すると、Fogボリュームは、ボリュームを通過するライトから、あなたが求めている独特の光の散乱を行ないます。 しかし、 Diffuse Limit と同様に、一般的には、ライトの寄与度は、光線が跳ね返る度に小さくなるので、4より大きい値を使用しても、目で見てわかるほどに現実的な画像になるとは限りません。

また、このパラメータの値を上げると、ボリューム画像のレンダリングに費やされる時間が劇的に増える可能性があります。

これは、すべての制限がサンプル毎に確率的に選択されるので浮動小数点値になっています。 そのため、例えば、 Diffuse Limit3.25に設定すると、光線の25%の Diffuse Limit が4、75%の Diffuse Limit を3に設定することができます。

SSS Limit

SSS光線がシーン内を伝搬することができる回数。 これは、 Diffuse Limit パラメータと同様の方法で動作します。

これは、すべての制限がサンプル毎に確率的に選択されるので浮動小数点値になっています。 そのため、例えば、 Diffuse Limit3.25に設定すると、光線の25%の Diffuse Limit が4、75%の Diffuse Limit を3に設定することができます。

Volume

Uniform Volume

このオブジェクトが均一密度のボリュームと見なしてレンダリングするかどうか。 サーフェスジオメトリ上にこのプロパティを使用すると、レンダラーはそのボリューム密度が均一であると想定してサンプルをもっと最適に配置することができるので、実際に均一密度のボリュームオブジェクトを作成するよりも効率的です。 そのサーフェスジオメトリのサーフェス法線は、どちら側にボリュームがあるのかを決めるのに使用され、その法線は内側から外に向いた方向となります。 サーフェスは閉じている必要はありません。もしサーフェスが閉じていなければ、そのボリュームはサーフェスから無限に遠い方へ延長されます。 閉じていないサーフェスは、そのサーフェスのエッジ付近で予期しない結果を招いてしまう場合があるので、カメラ視点をエッジから遠ざけるようにしてください。

Uniform Volume Density

均一ボリュームをレンダリングする時(karma:object:volumeuniformが有効な時)にサンプルを分布させる方法を決めます。 正しい結果を得るには、このパラメータを均一ボリュームシェーダの密度と同じにしなければなりません。

Note

このプロパティはHoudini20.0で廃止されました。

Uniform Volume Samples

均一ボリュームをレンダリングする時(karma:object:volumeuniformが有効な時)に生成するサンプル数。 これらのサンプルは、すべて明度が同じであれば同じ画像寄与を生成するように分布されます。

Note

グローバルの Screendoor Limit が0より大きい時、このプロパティは何の効果もありません。 そのため、事実上、非推奨となっています。

Volume Sampling Field

空っぽの空間の間引きに使用されるボリュームフィールドを名前で指定します。 デフォルトでは、Karmaはdensityフィールドが存在すれば、そのdensityフィールドを使用します。 ボリュームの一部のdensityが0でもその部分をまだレンダリングする必要がある発光ボリュームをレンダリングしている場合、 このパラメータを使用して、別のフィールドを指定してください。

Volume Filter

ボリュームPrimはボリュームチャンネルの評価時にフィルターを使用することができます。 ここには、そのフィルターを指定します。 デフォルトのboxフィルターは、評価が高速で、非常に滑らかな流体シミュレーションに対して鮮明なレンダリング結果を生成します。 ボクセルデータにエイリアシング(端に沿って段々状になっている)が含まれている場合、大きなフィルター幅を使用したり、もっと滑らかなフィルターを使用して、許容できる結果を生成する必要があります。 エイリアシングがかかったボリュームデータの場合、フィルター幅が1.5のgaussが適切なフィルターです。

  • point

  • box

  • gauss

  • bartlett

  • blackman

  • catrom

  • hanning

  • mitchell

Volume Filter Width

ここには、“Volume Filter”プロパティのフィルター幅を指定します。 このフィルター幅は、ボクセル数で指定します。 フィルター幅が大きいほど、レンダリングに時間がかかり、ブラーのかかったレンダリング結果が生成されますが、一部の種類のボクセルデータではエイリアシングに対処する必要が出てきます。

Shading

Shading Quality

このパラメータは、サーフェスシェーディングの品質を制御します。 このパラメータを調整すると、シェーディングの微分に影響し、例えば、MIPマップの選択に影響します。

Diffuse Quality

このパラメータは、間接ディフューズコンポーネントの Min Secondary SamplesMax Secondary Samples の乗数として作用します。

Reflection Quality

このパラメータは、間接反射コンポーネントの Min Secondary SamplesMax Secondary Samples の乗数として作用します。

Refraction Quality

このパラメータは、間接屈折コンポーネントの Min Secondary SamplesMax Secondary Samples の乗数として作用します。

Volume Quality

このパラメータは、間接ボリュームコンポーネントの Min Secondary SamplesMax Secondary Samples の乗数として作用します。

SSS Quality

このパラメータは、SSSコンポーネントの Min Secondary SamplesMax Secondary Samples の乗数として作用します。

Cusp Angle

オブジェクト上に法線がない場合、この値より大きい二面角を持つエッジがカスプ(尖)化されます。 mantraと互換性を持たせるために、Karmaはvm_cuspangleDetailアトリビュート(これは、この設定よりも優先度が高いです)も探します。

Holdout Mode

これを“Matte”モードに設定すると、オブジェクトはカットアウトマットと見なされます。 オブジェクトのライティング寄与とアルファは、“holdouts”接頭辞が付いたLPE AOVsに転送されます。 Holdout Modeは、ray:hitPray:hitNなどのユーティリティAOVには影響を与えません。 “Background”モードは“Matte”モードと同様ですが、間接バウンス内にシャドウ寄与が乗算された“事前照明”が出るように背景プレートで使用します。 シェーダのディフューズアルベドを使用して事前照明イラディアンスが決定されます。

Fix Shadow Terminator

スムース法線とフェース法線との相違が原因でローポリメッシュ上に自己シャドウの乱れが発生しないように、シャドウ光線のシェーディング位置を調整します。

LPE Tag

ライトパスエクスプレッションで使用するためにライトまたはオブジェクトに割り当てるカスタムラベル。

Direct Refraction Subset

屈折コンポーネントを持つ複合BSDFsの場合、指定した場所に属しているライトの直接照明のみが適用されます。 ジオメトリ法線と同じ方向を向いた光線は“Outside”と見なされます。 ソリッド/閉じたマニフォールドの透明マテリアルの場合、このパラメータを“Outside”に設定すると、直接照明のノイズが減り無駄なシャドウ光線が削減されるのでレンダーパフォーマンスを改善することができます。

Dielectric Priority

屈折マテリアルの優先度を指定します。これによって、レンダラーは、レンダリング時に多数の重なった屈折マテリアルからどれを優先させるのか選択することができます。 これは、グラスの中の水と氷などの効果で有効です。 デフォルトは0(最高優先度)で、数値が上がると(1、2、3など)、優先度が下がっていきます。

Enable Caustics

透過オブジェクトからのブルートフォース(総当り)によるコースティクス。 間接ディフューズバウンスで見受けられる光沢BSDFの評価を許可します。 その計算には非常に膨大な数のディフューズ光線が必要となることが多いです。 特に Caustics Roughness Clamp パラメータに非常に小さな値を設定した場合、または、 Indirect Guiding の機能が無効な場合でそうなります。

疑似コースティクス
真コースティクス

Caustics Roughness Clamp

シェーダで設定された値を超えて、真コースティクスのために最小の粗さを強制します。 この値を上げると、コースティクスの精度は悪くなるもののノイズを少なくすることができます。

Caustics Roughness: 0
Caustics Roughness: 0.2 (デフォルト)
Caustics Roughness: 0.5
Caustics Roughness: 0.8

Note

Roughness Clamp はGGX BSDFでのみ動作し、Phong BSDF、円錐BSDF、スペキュラーBSDFには何の効果もありません。

Enable Internal Reflection

光沢のある透過BSDFの背面で内部反射を評価することができます。 内部反射を適用したいのであれば、このオプションを有効にします。

Note

Thin Walledを有効にしたMaterialX Standard Surfaceでは、このオプションは何の効果もありません。 このマテリアルは常に内部反射を表示します。

Evaluate BSDF On Fake Caustics

BSDFが擬似コースティクスに影響を与えるようにします。例えば、赤いボトルは自動的に赤い影を落とすようになります。 BSDFを無効にするとレンダリング時間を短くすることができますが、代わりにfakecausticscolorを使用して一定の影の色を設定する必要があります。

Fake Caustics Color

疑似コースティクスに色味を付けます。 これを使用して、BSDFの結果を暗くしたり、BSDFが無効な場合に一定の影の色を設定することができます。

Fake Caustics Opacity

疑似コースティクスの不透明度を制御します。これを使用して、BSDFの結果を明るくすることができます。

Light

Treat As Light Source

発光マテリアルを持つオブジェクトがシーン内にライトを生成するようになります。 オブジェクトが十分に影響力を持っている場合(サイズ、明るさなど)、Karmaはそのオブジェクトを(通常のライトと同様に)明示的な光源であるかのように扱うことができます。 つまり、放出される光が非常に効率よく処理されるようになります。 しかし、これを行なうと、システム内の他のところで余計なオーバーヘッドが発生します(例えば、メモリ使用量が増えたり、更新時間が遅くなったりなど)。

3つのオプションがあります。 “No”は、オブジェクトが光源でないと設定します。 “Yes”は、オブジェクトが光源であると設定します。 “Auto”(デフォルト)は、Karmaが内部の経験則に基づいてオブジェクトを光源として扱うべきかどうかを決定します。

Light Sampling Quality

オブジェクトをジオメトリ光源として使用する時、これは、ライト毎のサンプリング品質を設定します。 この品質を上げると、この光源のサンプル数が増えるので、他の光源よりもこのライトのサンプル品質が良くなります。

Note

これは、オブジェクトが受ける光の品質ではありません。

Light Source Diffuse Multiplier

この発光オブジェクトがマテリアルのディフューズ、SSS、ボリュームの反応に与える効果の乗数。

Light Source Specular Multiplier

この発光オブジェクトがマテリアルの反射、屈折の反応に与える効果の乗数。

Is Portal

有効にすると、オブジェクトは、ポータルジオメトリの可視性に基づいてドームライトの特定の部分のみを許可する“ライトポータル”に変わります。

Portal Dome Lights

このポータルに関連付けるドームライトをスペースで区切ったリスト。

Geometry

Render Points As

ポイントクラウドをレンダリングする時、カメラの方を向いた円盤、球、法線アトリビュートの方を向いた円盤としてレンダリングすることができます。

Render Curves As

カーブをレンダリングする時、カメラの方を向いたリボン、両端を丸めたチューブ、ポイントに追加された法線アトリビュートの方を向いたリボンとしてレンダリングすることができます。

Override Curves Basis

USDは、Houdiniで直接対応できていないCurve Basisタイプに対応しています。 時には、HoudiniのCurve Basisをオーバーライドしたいことがあります。 例えば、Houdiniの直線カーブをBezier、B-Spline、Catmull-Romのどれかの基底を使ってレンダリングしたい時です。 このメニューは、KarmaがUSD Primsに関連付けられている基底をオーバーライドするようにします。

Note

カーブのトポロジーをターゲットの基底に合わせなければなりません。 例えば、3次曲線の基底を選択した場合、どのカーブも頂点数が最低でも4つなければなりません。 Bezier基底の場合、カーブの頂点数は4 + 3*Nでなければなりません。

Cull Backface

有効にすると、カメラに背いているジオメトリはレンダリングされません。

Orientation

objectstateVEX関数から照会することができ、ジオメトリの周回順に応じて “rightHanded”または“leftHanded”のどれかが返されます。 このプロパティは、USDジオメトリのorientationアトリビュートから派生し、直接設定することはできません。

Dicing

True Displacements

True Displacementsを無効にすると、ジオメトリはDicingされず、代わりにディスプレイスメントシェーダはサーフェスに対してバンプマップを実行します。

Dicing Quality

このパラメータは、スムースサーフェス(サブディビジョンサーフェスや変位サーフェス)のジオメトリサブディビジョン解像度を制御します。 他のすべてのパラメータがデフォルトの時、値を1にすると、近似で1つのマイクロポリゴンがピクセル毎に作成されます。 値を高くするとより小さいマイクロポリゴンを生成します。これはシェーディングが細かくなり、品質が良くなることを意味します。

シェーディング品質の変更の効果は、karma:object:dicingquality2乗 の係数によってシェーディングの量を増やしたり、下げたりすることができます。 つまり、シェーディング品質を2にすると、4倍のシェーディング量を実行し、0.5にすれば0.25倍のシェーディング量を実行します。

Dicing Flatness

このプロパティはほぼ平坦なプリミティブのテセレーションレベルを制御します。 値を上げることで、より多くのプリミティブが平坦とみなされ、細分化が少なくなります。 より精密(最適化がすくない)なほぼ平坦なサーフェスにするなら、このオプションを 下げて ください。

Dicing Minimum Depth

-1に設定しなかった場合、サブディビジョンまたは変位をするためにフェースをDicingする時、Karmは各フェースの行と列の最小数をこの値の2乗に設定します。

Dicing Maximum Depth

-1に設定しなかった場合、サブディビジョンまたは変位をするためにフェースをDicingする時、Karmaは各フェースの行と列の最大数をこの値の2乗に設定します。 “Dicing Minimum Depth”と同じ(またはそれより小さい)値に設定すると、実質的に、ラスター空間/オフスクリーン単位を無視した固定パラメトリックサブディビジョンと同等になります。 この値を-1のままにすることを推奨します。

LOPノード

  • Add Variant

    Prim上のバリアントセットに1つ以上のバリアントを追加します。このノードは、そのPrimが存在しなければ、そのPrimを作成します。

  • Additional Render Vars

    複数のRender Varsを作成します。

  • Asset Reference

    USDアセットをリファレンス、トランスフォーム、バリアント選択します。

  • Assign Material

    1つ以上のUSD Primsにマテリアルを割り当てます。VEXを使用することで、プログラム的にマテリアルを割り当てたり、プログラム的に割り当て毎にマテリアル設定をオーバーライドしたり、プログラム的にジオメトリサブセットにマテリアルを割り当てることもできます。

  • Assign Prototypes

    Point InstancesまたはUSD Instanceable Primsを切り替えて、異なるプロトタイプをインスタンス化します。

  • Attribute VOP

    VOPネットワークを使ってUSDアトリビュート値を作成/編集します。

  • Attribute Wrangle

    VEXスニペットを使ってUSD Primアトリビュートを作成/編集します。

  • Auto Select LOD

    カメラからPrimまでの距離に基づいて自動的にLODバリアントを選択します。

  • Background Plate

    背景が見透けるようにシーン内に穴を残すホールドアウトオブジェクトまたはマットオブジェクトをセットアップします。これらのPrimsはまだ影を受け、背景であるかのように反射に寄与します。

  • Bake Skinning

    UsdSkelで駆動されたアニメーションをトランスフォームとポイントポジションにベイクします。

  • Basis Curves

    基底カーブシェイプPrimを作成または編集します。

  • Begin Context Options Block

    このノードは、LOPノード群のブロックを開始します。このブロック内では特定のコンテキストオプションが特定の値を持ちます。

  • Blend

    小数点ウェイトに基づいてレイヤーのアトリビュートに部分的に編集を適用します。

  • Blend Constraint

    パラメータとして指定されたウェイトのリストに応じてトランスフォームをブレンドします。

  • Cache

    異なる時間におけるネットワークのクック結果をキャッシュ化することで、再生パフォーマンスを上げます。

  • Camera

    シーンにUSDカメラを追加します。

  • Capsule

    カプセル(開口部を半球で閉じたチューブ)形状Primを作成/編集します。

  • Collection

    プリミティブパターンを使ってコレクションを作成/編集します。

  • Component Geometry

    ジオメトリコンテナ。または、Component Builderツールで作成されたネットワーク内でソースを取り込みます。

  • Component Geometry Variants

    Component Builderツールで作成されたネットワーク内でジオメトリバリアントをセットアップします。

  • Component Material

    Component Builderツールで作成されたネットワーク内でマテリアルをジオメトリに割り当てます。

  • Component Output

    Component Builderツールで作成されたネットワーク内で最終Component Primを組み立てます。

  • Cone

    円錐形状Primを作成/編集します。

  • Configure Layer

    レイヤー上のメタデータを編集します。

  • Configure Primitives

    1つ以上のPrim上の色々なメタデータを編集します。

  • Configure Properties

    プロパティ(リレーションシップとアトリビュート)上のメタデータを修正します。

  • Configure Stage

    レイヤーをステージとAsset Resolutionに読み込むための方法を示したメタデータを修正します。

  • Coordinate System

    シェーダで使用される名前付き座標系を定義します。

  • Copy Property

    あるプリミティブのプロパティを別のプリミティブにコピーしたり、プリミティブ上のプロパティの名前を変更します。

  • Create LOD

    PolyReduce SOPを使って高解像度モデルから複数のLODを自動的に生成し、それらのLODをUSDバリアントとして保存します。

  • Cube

    キューブ形状Primを作成/編集します。

  • Cylinder

    シリンダー形状Primを作成/編集します。

  • Distant Light

    太陽などの遠くにある光源を表現したUSD Distant Lightを作成または編集します。いくつか便利なKarma固有のアトリビュートを追加します。

  • Dome Light

    USD Dome Light Primを作成/編集します。ドームライトは光を 内側 に放射して、シーンを囲んだ空/環境からの入射光を模倣します。

  • Drop

    重量によるPrimsの落下シミュレーションを実行します。

  • Duplicate

    Prim(とその子孫)のコピーを作成します。

  • Edit

    ビューア内でインタラクティブにPrimsをトランスフォームさせます。物理衝突を使用して、プロップを現実的に配置することができます。

  • Edit Context Options

  • Edit Material

    パラメータやシェーダ接続を変更することで既存のUSDマテリアルを編集することができます。これは、既存マテリアルが編集不可なレイヤーの場合に役立ちます。

  • Edit Material Properties

    マテリアルまたはシェーダの入力アトリビュートの値を直接編集できるようにそれらのアトリビュートを反映させたSpareパラメータインターフェースを構築することができます。

  • Edit Properties

    アトリビュート値とリレーションシップ値を直接編集するためのSpareパラメータインターフェースを構築することができます。

  • Edit Properties From Node

    他のノードのパラメータを参照して、アトリビュート値とリレーションシップ値を直接編集することができます。

  • Edit Prototypes

    インスタンス化セットアップを阻害することなく、その場でネイティブインスタンスまたはポイントインスタンスのプロトタイプを修正します。

  • Edit Target Layer

    アクティブレイヤー内のPrimsとアトリビュートをオーバーライドするのではなく、下位レイヤーで直接編集を適用することができます。

  • Error

    親アセット上で表示可能なメッセージ、警告、エラーを生成します。

  • Explore Variants

    Primのバリアントを視覚化、設定、抽出します。

  • Extract Instances

    インスタンスを実際に編集可能なPrimに変換(ヒーロー化)します。

  • Fetch

    他のLOP(他のLOPネットワーク内のLOPも可能)の出力を取得します。

  • File Cache

    USDレイヤー(アニメーションも可能)をディスクにキャッシュ化します(一度書き出してから、読み込みます)。

  • Follow Path Constraint

    Primがパスカーブに追従するように拘束します。

  • For Each

    For-Eachループブロックの終了ノード。

  • Geometry Clip Sequence

  • Geometry Sequence

    ジオメトリファイルシーケンスをアニメーションジオメトリとしてLOPsに取り込みます。

  • Geometry Subset VOP

    VEXpressionまたはVOPネットワークの評価に基づいて(SOPのグループと同様に)ジオメトリPrims内にUSDジオメトリサブセットを作成します。

  • Graft Branches

    2番目の入力からPrims/ブランチを受け取り、それらのツリーを1番目の入力のシーングラフツリーのブランチに取り付けます。

  • Graft Stages

    他の入力からシーングラフツリーを受け取り、それらのツリーを1番目の入力のシーングラフツリーのブランチに取り付けます。

  • HDA Dynamic Payload

    ディスク上のOBJ/SOPアセットをクックして、そのアニメーションジオメトリ出力をUSD Payloadとして取り込みます。

  • Hermite Curves

    エルミートカーブシェイプPrimを作成または編集します。

  • Houdini Feather Procedural

    レンダリング用のフェザーを生成します。

  • Houdini Preview Procedurals

    Solarisでインタラクティブに作業する時にHoudini Proceduralsを呼び出します。

  • Houdini Procedural: Hair

    Solaris用Houdini Hair Procedural。

  • Houdini Procedural: Ocean

    Solaris用Houdini Ocean Procedural。

  • Inline USD

    レイヤーを表現したusdaコードを解読し、そのレイヤーをレイヤースタックに追加します。

  • Insertion Point

    ノードが挿入可能なノードグラフ内のポイントを表現します。

  • Instancer

    ポイント上にPrimsをインスタンス化またはコピーします。

  • Instancer

    共通設定を共有した複数のRender Productを作成します。

  • Isolate Scene

    ステージのマスク領域で作業します。

  • Karma

    HoudiniのKarmaレンダラーを使ってUSDシーンをレンダリングします。

  • Karma Cryptomatte

    Karma用Cryptomatte AOVsをセットアップします。

  • Karma Fog Box

    ボックス内に定数ボリュームを作成します。

  • Karma Physical Sky

    Karma Sky DomeとSun Lightのリグを作成します。

  • Karma Render Properties

    Karma用レンダープロパティを構成します。

  • Karma Sky Dome Light

    Karma Sky Dome Lightを作成または編集します。

  • Karma Standard Render Vars

    標準Karma Render Vars(AOVs/Image Planes)を作成します。

  • LPE Tag

    ライトのLPE Tagを管理します。

  • Labs Karma AOVs for RenderMan Denoiser

    Pixar RerderManデノイザ用のAOVsを生成します。

  • Layer Break

    このノードより下流のノードで編集をするための新しいアクティブサブレイヤーを開始し、ディスクに保存する際にこれまでのすべてのレイヤーが破棄されることを示します。

  • Layer Replace

    特定のレイヤー内のすべての用途を2番目の入力の代替レイヤーに置換します。

  • Layout

    インスタンス化されたUSDアセットをシーンに取り込むツールが備わっています。個々にコンポーネントを配置したり、カスタマイズ可能なブラシを使って色々な方法でコンポーネントをペイント/スキャッターしたり、既存のインスタンスを編集することができます。

  • Light

    USD Light Primを作成/編集します。このノードは、Karma固有のいくつかの便利アトリビュートも追加します。

  • Light Filter Library

    VOPノードからUSD Light Filter Primsを作成します。

  • Light Linker

    ルールに基づいてUSDライトリンクプロパティを作成します。

  • Light Mixer

    複数のライトに対してUSDプロパティをインタラクティブに編集することができます。

  • Load Layer for Editing

  • Loft Payload Info

    ペイロードをロードするPrimにそのペイロード内部の基本情報を追加します。

  • Look At Constraint

    Primがターゲットの方へ常に向くように拘束します。

  • Mask from Bounds

    選択したPrimsが境界形状内に存在するかどうか/どれだけの割合で存在するかに応じてPrimvarを設定します。

  • Match Size

    参照境界ボックスと一致するように入力ジオメトリのサイズと中心を変更します。

  • Material Library

    シェーダVOPノードからUSDマテリアルPrimsを作成します。

  • Material Linker

    ルールに基づいてマテリアルの割り当てを作成します。

  • Material Variation

    Prim/インスタンス単位でマテリアルパラメータをオーバーライドするためのアトリビュート/Primvarsを作成します。

  • Merge LOP

    入力ステージのレイヤー(s)をレイヤースタックに1本化します。

  • Merge Point Instancers

    ポイントインスタンサーを1個に結合されたポイントインスタンサーにマージします。

  • Mesh

    MeshシェイプPrimを作成または編集します。

  • Modify Paths

    アセットパスアトリビュート値を修正します。

  • Modify Point Instances

    個々のポイントインスタンスに対してポイントトランスフォームとポイントプロパティ値を変更します。

  • Motion Blur

    レンダリング時にモーションブラーがかかるようにタイムサンプルを追加します。

  • Null

    このノードは何もしません。ネットワーク内の固定位置としてNullをネットワークに挿入することで、エクスプレッション/スクリプト内で名前によってその位置を参照するのに役立ちます。

  • Output

    サブネットワークの出力を表現します。複数の出力を使ってノードアセットを設計することができます。

  • Parent Constraint

    ツリー内のどこかの他のPrimのトランスフォーム階層をPrimに継承させたようにします。

  • Points

    PointsシェイプPrimを作成または編集します。

  • Points Constraint

    ジオメトリのポイントポジションを使ってPrimsの位置と向きを拘束します。

  • Primitive

    特定のタイプの複数のアトリビュートを一括で作成します。

  • Prune

    Primsやポイントインスタンスを非表示または非アクティブにします。

  • Python Script

    このノード内にUSD APIを使ってPythonコードを記述することで、ステージを直接制御することができます。

  • RBD Destruction

    USDでの破壊シミュレーションの例。これは事前準備したエフェクトとしても役立ちます。

  • Reference

    外部USDファイル/他のLOPノードで作成されたレイヤーの内容を既存シーングラフツリーのブランチで参照します。既存のリファレンスを削除/置換することもできます。

  • Render Geometry Settings

    シーングラフ内のジオメトリにレンダラー固有のジオメトリ設定を適用します。

  • Render Product

    UsdRenderProduct Primを作成/編集します。このPrimは、そのRender Productの生成方法を指定したアトリビュートと共にレンダラーの出力(レンダリング画像またはレンダラーが生成した他のファイルなどの中間生成物)を表現します。

  • Render Settings

    UsdRenderSettings Primを作成/編集します。このPrimには、シーンをレンダリングするための全般的な設定を格納します。

  • Render Var

    レンダラー/シェーダで計算されるカスタム変数のシェーダ出力やLight Path Expression(LPE)を指定します。

  • Resample Transforms

    USD Prims上の既存のタイムサンプルから補間されたトランスフォームタイムサンプルを生成します。

  • Restructure Scene Graph

    このノードには、Primパス、バリアントセット、コンポジションアークを編集するための様々なオペレーションが用意されています。

  • Retime Instances

    選択したインスタンス上のアニメーションのタイミングをオフセット/スケールさせます。

  • SOP Character Import

    SOPネットワークからキャラクタまたはアニメーションをUSDシーングラフに取り込みます。

  • SOP Create

    このノード内部のSOPネットワーク内でジオメトリを作成することができるので、別にSOPネットワークを用意することなくLOPネットワーク内のその場でジオメトリを作成することができます。

  • SOP Crowd Import

    SOPネットワークから群衆をUSDシーングラフに取り込みます。

  • SOP Import

    SOPネットワークのジオメトリをUSDシーングラフに取り込みます。

  • SOP Modify

    USDジオメトリをSOPジオメトリに変換し、そのジオメトリに対してこのノード内部のSOPサブネットを実行し、その結果をUSDオーバーライドに戻します。

  • Scene Doctor

    USDステージ上のプリミティブを検証します。

  • Scene Import

    Objectレベルのモデル、マテリアル、ライトをLOPネットワークに取り込みます。

  • Scope

    Scope Primを作成します。Scopeとは最も単純なグループ化の形式であり、トランスフォームを持ちません。Scopeはシーンツリーを整理するのに役立ちます。

  • Set Extents

    選択したPrimsの境界ボックスメタデータを設定します。

  • Set Variant

    Prim上のバリアントセットに格納されているどれかのバリアントを選択(切り替え)します。

  • Simulation Proxy

    物理シミュレーションに適した低解像度ポリゴン衝突ジオメトリを生成し、オリジナルモデルに対してプロキシリレーションシップを作成します。

  • Sphere

    球形状Primを作成/編集します。

  • Split Point Instancers

    ポイントインスタンサーを2個以上のインスタンスに分割します。これは元のインスタンスを分割します。

  • Split Primitive

    ジオメトリサブセットまたはPrimvar値に基づいてUSDジオメトリPrimsを子Primsに分割します。

  • Split Scene

    シーングラフをお互いにかぶらない2つのPrimsセットに分割します。

  • Stage Manager

    一度に多くのファイルを参照して、それらをシーングラフツリー内に配置するための便利インターフェースを備えています。

  • Store Parameter Values

    ステージ内の一時的な(保存されていない)データを格納することができます。

  • Sublayer

    USDファイルまたは他のLOPノードチェーンをサブレイヤーとして取り込んだり、既存のサブレイヤーを削除/置換/並べ替えします。

  • Subnet

    LOPサブネットワークをカプセル化することで、一部のネットワークを整理して隠すことができます。

  • Surface Constraint

    Primがサーフェスに引っ付くように拘束します。

  • Switch

    パラメータ選択またはエクスプレッションに基づいて複数入力のどれかを通過させます。

  • TimeShift

    タイムラインの異なる位置におけるステージをそのまま出力します。

  • Transform

    選択したUSD Primsのトランスフォームを編集します。

  • Transform UV

    USD Prims上のテクスチャ座標を移動、回転、スケールさせます。

  • USD ROP

  • USD Render ROP

  • Unassign Material

    1個以上のUSDプリミティブからマテリアルのバインドを解除します。

  • Value Clip

  • Vary Material Assignment

    いくつかのPrimsに対して異なるマテリアルを割り当ててバリエーションを生成します。

  • Volume

    フィールドPrimsを含んだボリュームPrimでディスク上のボリュームデータを参照します。

  • Xform

    Xform Primを作成/編集します。Xform(とそのサブクラス)はシーンツリー内のトランスフォームを表現します。