Houdini 20.0 Nodes Dynamics nodes

Gas SubStep dynamics node

A microsolver that substeps input microsolvers.

On this page

The Gas SubStep DOP is a microsolver used in building larger fluid simulations. The Fluid Solver and Smoke Solver DOPs allow microsolvers to be added before or after the main solver step to extend or tweak the simulation. Alternatively, enterprising people may attempt to build an entire new solver out of microsolvers.

The Gas SubStep DOP will execute each solver wired into it in turn, from left input to right input. It will also substep, that is, repeatedly execute the input solvers with successive substeps until the full timestep is performed. The parameters allow one to control how this substepping is performed, including computing it from the state of the geometry.

The distribution options allow multiple slices to synchronize their substepping. This is required if the different slices are going to exchange data during a substep. If they attempt to run a different number of timesteps, perhaps due to seeing different velocity fields, they would desynchronize.

Parameters

Primary Solver

Specifies the sub-solver to use when other solvers make queries about the objects to which this solver is applied. This includes information such as the collision method to use, the mass of the object, or physical properties like friction.

This value should be set to point to the sub-solver that best represents how other objects in the scene should react to these objects.

Velocity Field

The vector field to use for computing the substep size. The maximum direction along each axis is compared with the voxel size to determine the number of voxels per second the velocity field is moving. This can then be used to compute the step size that is needed to prevent more than CFL voxels from being moved in a single substep.

Geometry

The geometry to use for computing the substep of particle simulations. The pscale attribute of the particle is used to determine the effective size, and is compared against the velocity attribute, v. The substep size is to prevent the particle from moving more than CFL of its lengths in a substep.

Min Substeps

Lower bound on the substep size. At least this number of substeps will be performed. This is useful when strong forces or sources require substepping that doesn’t show up in the velocity field.

Max Substeps

The maximum number of substeps. No more than this number will be performed.

CFL Condition

Controls the automatic computation of substepping. The idea is that if one steps more than a single voxel, one risks losing the intermediate data. A CFL condition of 1 means that the timestep will be reduced so that a particle moving at the maximum velocity of the velocity field will move only 1 voxel in a timestep. A CFL of 2 will allow it to move 2 voxels in a timestep.

Evaluate CFL Once Per Solve

Only evaluate the CFL Condition once at the beginning of the timestep. Turning on this option avoids testing the velocity for each substep; however, then the solver cannot detect significant velocity changes within the frame.

Quantize to Max Substeps

When turned on, use substeps that divide up the frame by Max Substeps so that the time always lands on a multiple of 1/Max Substeps.

For example, if Max Substeps is set to 4, but the CFL Condition only requires 3 substeps, the solver will divide up the frame into 3 substeps, with the substeps located at multiples of 1/Max Substeps. One combination of the substep lengths could be 0.25, 0.5, and 0.25, with the frame divided up from 0-0.25, 0.25-0.75, and 0.75-1. The solver also takes into account the current state of the particles (particle size and velocity) when dividing the frame into substeps.

This option can be useful for re-using input geometry that has been cached to file at increments of 1/Max Substeps. For example, if your geometry is cached on disk at 4 substeps per frame, then you may want your simulation’s substeps to always land on a multiple of 0.25 so that you don’t have to interpolate the geometry.

Tracker Address

What machine will run the simtracker.py process for synchronization. If this is blank, there will be no attempt at synchronization or data transfer.

Tracker Port

The port specified when starting the simtracker.py process for communication.

Job Name

The job name to describe this synchronization or data exchange event. By using different job names one can have machines part of separate data-exchange and synchronization events.

Slice/Peer

The slice number that this machine should report itself as. Each machine connecting under the job name should have its own unique slice number. Sometimes this can be inferred from the operation so this parameter will be absent.

Number of Slice/Number of Peers

Total number of machines that have to synchronize. Sometimes this can be determined from the operation, so this parameter will be absent.

Create Substep Data

Pre-create substep information for all affector objects. Some old solvers required this information to operate properly.

Note

These objects are always deleted after solving a frame, so they are never visible to Houdini.

Parameter Operations

Each data option parameter has an associated menu which specifies how that parameter operates.

Use Default

Use the value from the Default Operation menu.

Set Initial

Set the value of this parameter only when this data is created. On all subsequent timesteps, the value of this parameter is not altered. This is useful for setting up initial conditions like position and velocity.

Set Always

Always set the value of this parameter. This is useful when specific keyframed values are required over time. This could be used to keyframe the position of an object over time, or to cause the geometry from a SOP to be refetched at each timestep if the geometry is deforming.

You can also use this setting in conjunction with the local variables for a parameter value to modify a value over time. For example, in the X Position, an expression like $tx + 0.1 would cause the object to move 0.1 units to the right on each timestep.

Set Never

Do not ever set the value of this parameter. This option is most useful when using this node to modify an existing piece of data connected through the first input.

For example, an RBD State DOP may want to animate just the mass of an object, and nothing else. The Set Never option could be used on all parameters except for Mass, which would use Set Always.

Default Operation

For any parameters with their Operation menu set to Use Default, this parameter controls what operation is used.

This parameter has the same menu options and meanings as the Parameter Operations menus, but without the Use Default choice.

Make Objects Mutual Affectors

All objects connected to the first input of this node become mutual affectors.

This is equivalent to using an Affector DOP to create an affector relationship between * and * before connecting it to this node. This option makes it convenient to have all objects feeding into a solver node affect each other.

Group

When an object connector is attached to the first input of this node, this parameter can be used to choose a subset of those objects to be affected by this node.

Data Name

Indicates the name that should be used to attach the data to an object or other piece of data. If the Data Name contains a “/” (or several), that indicates traversing inside subdata.

For example, if the Fan Force DOP has the default Data Name “Forces/Fan”. This attaches the data with the name “Fan” to an existing piece of data named “Forces”. If no data named “Forces” exists, a simple piece of container data is created to hold the “Fan” subdata.

Different pieces of data have different requirements on what names should be used for them. Except in very rare situations, the default value should be used. Some exceptions are described with particular pieces of data or with solvers that make use of some particular type of data.

Unique Data Name

Turning on this parameter modifies the Data Name parameter value to ensure that the data created by this node is attached with a unique name so it will not overwrite any existing data.

With this parameter turned off, attaching two pieces of data with the same name will cause the second one to replace the first. There are situations where each type of behavior is desirable.

If an object needs to have several Fan Forces blowing on it, it is much easier to use the Unique Data Name feature to ensure that each fan does not overwrite a previous fan rather than trying to change the Data Name of each fan individually to avoid conflicts.

On the other hand, if an object is known to have RBD State data already attached to it, leaving this option turned off will allow some new RBD State data to overwrite the existing data.

Solver Per Object

The default behavior for solvers is to attach the exact same solver to all of the objects specified in the group. This allows the objects to be processed in a single pass by the solver, since the parameters are identical for each object.

However, some objects operate more logically on a single object at a time. In these cases, one may want to use $OBJID expressions to vary the solver parameters across the objects. Setting this toggle will create a separate solver per object, allowing $OBJID to vary as expected.

Setting this is also required if stamping the parameters with a Copy Data DOP.

Inputs

All Inputs

Any microsolvers wired into these inputs will be executed prior to this node executing. The chain of nodes will thus be processed in a top-down manner.

Outputs

First Output

The operation of this output depends on what inputs are connected to this node. If an object stream is input to this node, the output is also an object stream containing the same objects as the input (but with the data from this node attached).

If no object stream is connected to this node, the output is a data output. This data output can be connected to an Apply Data DOP, or connected directly to a data input of another data node, to attach the data from this node to an object or another piece of data.

Locals

channelname

This DOP node defines a local variable for each channel and parameter on the Data Options page, with the same name as the channel. So for example, the node may have channels for Position (positionx, positiony, positionz) and a parameter for an object name (objectname).

Then there will also be local variables with the names positionx, positiony, positionz, and objectname. These variables will evaluate to the previous value for that parameter.

This previous value is always stored as part of the data attached to the object being processed. This is essentially a shortcut for a dopfield expression like:

dopfield($DOPNET, $OBJID, dataName, "Options", 0, channelname)

If the data does not already exist, then a value of zero or an empty string will be returned.

DATACT

This value is the simulation time (see variable ST) at which the current data was created. This value may not be the same as the current simulation time if this node is modifying existing data, rather than creating new data.

DATACF

This value is the simulation frame (see variable SF) at which the current data was created. This value may not be the same as the current simulation frame if this node is modifying existing data, rather than creating new data.

RELNAME

This value will be set only when data is being attached to a relationship (such as when Constraint Anchor DOP is connected to the second, third, of fourth inputs of a Constraint DOP).

In this case, this value is set to the name of the relationship to which the data is being attached.

RELOBJIDS

This value will be set only when data is being attached to a relationship (such as when Constraint Anchor DOP is connected to the second, third, of fourth inputs of a Constraint DOP).

In this case, this value is set to a string that is a space separated list of the object identifiers for all the Affected Objects of the relationship to which the data is being attached.

RELOBJNAMES

This value will be set only when data is being attached to a relationship (such as when Constraint Anchor DOP is connected to the second, third, of fourth inputs of a Constraint DOP).

In this case, this value is set to a string that is a space separated list of the names of all the Affected Objects of the relationship to which the data is being attached.

RELAFFOBJIDS

This value will be set only when data is being attached to a relationship (such as when Constraint Anchor DOP is connected to the second, third, of fourth inputs of a Constraint DOP).

In this case, this value is set to a string that is a space separated list of the object identifiers for all the Affector Objects of the relationship to which the data is being attached.

RELAFFOBJNAMES

This value will be set only when data is being attached to a relationship (such as when Constraint Anchor DOP is connected to the second, third, of fourth inputs of a Constraint DOP).

In this case, this value is set to a string that is a space separated list of the names of all the Affector Objects of the relationship to which the data is being attached.

ST

The simulation time for which the node is being evaluated.

Depending on the settings of the DOP Network Offset Time and Scale Time parameters, this value may not be equal to the current Houdini time represented by the variable T.

ST is guaranteed to have a value of zero at the start of a simulation, so when testing for the first timestep of a simulation, it is best to use a test like $ST == 0, rather than $T == 0 or $FF == 1.

SF

The simulation frame (or more accurately, the simulation time step number) for which the node is being evaluated.

Depending on the settings of the DOP Network parameters, this value may not be equal to the current Houdini frame number represented by the variable F. Instead, it is equal to the simulation time (ST) divided by the simulation timestep size (TIMESTEP).

TIMESTEP

The size of a simulation timestep. This value is useful for scaling values that are expressed in units per second, but are applied on each timestep.

SFPS

The inverse of the TIMESTEP value. It is the number of timesteps per second of simulation time.

SNOBJ

The number of objects in the simulation. For nodes that create objects such as the Empty Object DOP, SNOBJ increases for each object that is evaluated.

A good way to guarantee unique object names is to use an expression like object_$SNOBJ.

NOBJ

The number of objects that are evaluated by the current node during this timestep. This value is often different from SNOBJ, as many nodes do not process all the objects in a simulation.

NOBJ may return 0 if the node does not process each object sequentially (such as the Group DOP).

OBJ

The index of the specific object being processed by the node. This value always runs from zero to NOBJ-1 in a given timestep. It does not identify the current object within the simulation like OBJID or OBJNAME; it only identifies the object’s position in the current order of processing.

This value is useful for generating a random number for each object, or simply splitting the objects into two or more groups to be processed in different ways. This value is -1 if the node does not process objects sequentially (such as the Group DOP).

OBJID

The unique identifier for the object being processed. Every object is assigned an integer value that is unique among all objects in the simulation for all time. Even if an object is deleted, its identifier is never reused. This is very useful in situations where each object needs to be treated differently, for example, to produce a unique random number for each object.

This value is also the best way to look up information on an object using the dopfield expression function.

OBJID is -1 if the node does not process objects sequentially (such as the Group DOP).

ALLOBJIDS

This string contains a space-separated list of the unique object identifiers for every object being processed by the current node.

ALLOBJNAMES

This string contains a space-separated list of the names of every object being processed by the current node.

OBJCT

The simulation time (see variable ST) at which the current object was created.

To check if an object was created on the current timestep, the expression $ST == $OBJCT should always be used.

This value is zero if the node does not process objects sequentially (such as the Group DOP).

OBJCF

The simulation frame (see variable SF) at which the current object was created. It is equivalent to using the dopsttoframe expression on the OBJCT variable.

This value is zero if the node does not process objects sequentially (such as the Group DOP).

OBJNAME

A string value containing the name of the object being processed.

Object names are not guaranteed to be unique within a simulation. However, if you name your objects carefully so that they are unique, the object name can be a much easier way to identify an object than the unique object identifier, OBJID.

The object name can also be used to treat a number of similar objects (with the same name) as a virtual group. If there are 20 objects named “myobject”, specifying strcmp($OBJNAME, "myobject") == 0 in the activation field of a DOP will cause that DOP to operate on only those 20 objects.

This value is the empty string if the node does not process objects sequentially (such as the Group DOP).

DOPNET

A string value containing the full path of the current DOP network. This value is most useful in DOP subnet digital assets where you want to know the path to the DOP network that contains the node.

Note

Most dynamics nodes have local variables with the same names as the node’s parameters. For example, in a Position DOP, you could write the expression:

$tx + 0.1

…to make the object move 0.1 units along the X axis at each timestep.

Dynamics nodes