 # Ground Plane dynamics node

Creates a ground plane suitable for RBD or cloth simulations.

The Ground Plane DOP creates a ground plane inside the DOP simulation. It creates a new object that has a simple grid geometry attached to it. The grid has a Volumetric Representation attached which simulates an infinitely large plane. This can be used as a collision surface for RBD or Cloth simulations.

Because the ground plane can be moved and reoriented, several ground planes can be used to box in an object.

## Using Ground Planes

1. Click the  Ground Plane tool on the Rigid Bodies tab. ## Parameters

Object Name

The name for the created object.

Display Proxy Geometry

The display of the proxy geometry can be turned off.

For more complicated adjustments of the display status, including enabling the rendering of the proxy geometry, use the Rendering Parameters DOP.

Color

The primitive color for the guide grid to be drawn in.

Grid Size

The scale factor for the guide grid. Note that the underlying volumetric representation will continue to infinity, unaffected by this scale factor.

Some culling methods, such as used by the RBD Solver, look at the geometry to determine a bounding volume. These may require a larger grid to ensure the collision with the ground plane is tested.

## Initial State

OBJ Path

Allows you to specify the position and rotation of the ground plane based on the position and rotation of an object at the scene level.

Position

The center of the ground plane.

Rotation

The orientation of the ground plane. This is in RX/RY/RZ format.

## Physical

Bounce

The elasticity of the object. If two objects of bounce 1.0 collide, they will rebound without losing energy. If two objects of bounce 0.0 collide, they will come to a standstill.

Bounce Forward

The tangential elasticity of the object. If two objects of bounce forward 1.0 collide, their tangential motion will be affected only by friction. If two objects of bounce forward 0.0 collide, their tangential motion will be matched.

Friction

The coefficient of friction of the object. A value of 0 means the object is frictionless.

This governs how much the tangential velocity is affected by collisions and resting contacts.

Dynamic Friction Scale

An object sliding may have a lower friction coefficient than an object at rest. This is the scale factor that relates the two. It is not a friction coefficient, but a scale between zero and one.

A value of one means that dynamic friction is equal to static friction. A scale of zero means that as soon as static friction is overcome the object acts without friction.

Temperature

Temperature marks how warm or cool an object is. This is used in gas simulations for ignition points of fuel or for buoyancy computations.

Since this does not relate directly to any real world temperature scale, ambient temperature is usually considered 0.

## Outputs

First

The ground plane object created by this node is sent through the single output.

## Locals

ST

This value is the simulation time for which the node is being evaluated.

This value may not be equal to the current Houdini time represented by the variable T, depending on the settings of the DOP Network Offset Time and Time Scale parameters.

This value is guaranteed to have a value of zero at the start of a simulation, so when testing for the first timestep of a simulation, it is best to use a test like `\$ST == 0` rather than `\$T == 0` or `\$FF == 1`.

SF

This value is the simulation frame (or more accurately, the simulation time step number) for which the node is being evaluated.

This value may not be equal to the current Houdini frame number represented by the variable F, depending on the settings of the DOP Network parameters. Instead, this value is equal to the simulation time (ST) divided by the simulation timestep size (TIMESTEP).

TIMESTEP

This value is the size of a simulation timestep. This value is useful to scale values that are expressed in units per second, but are applied on each timestep.

SFPS

This value is the inverse of the TIMESTEP value. It is the number of timesteps per second of simulation time.

SNOBJ

This is the number of objects in the simulation. For nodes that create objects such as the Empty Object node, this value will increase for each object that is evaluated.

A good way to guarantee unique object names is to use an expression like `object_\$SNOBJ`.

NOBJ

This value is the number of objects that will be evaluated by the current node during this timestep. This value will often be different from SNOBJ, as many nodes do not process all the objects in a simulation.

This value may return 0 if the node does not process each object sequentially (such as the Group DOP).

OBJ

This value is the index of the specific object being processed by the node. This value will always run from zero to NOBJ-1 in a given timestep. This value does not identify the current object within the simulation like OBJID or OBJNAME, just the object’s position in the current order of processing.

This value is useful for generating a random number for each object, or simply splitting the objects into two or more groups to be processed in different ways. This value will be -1 if the node does not process objects sequentially (such as the Group DOP).

OBJID

This is the unique object identifier for the object being processed. Every object is assigned an integer value that is unique among all objects in the simulation for all time. Even if an object is deleted, its identifier is never reused.

The object identifier can always be used to uniquely identify a given object. This makes this variable very useful in situations where each object needs to be treated differently. It can be used to produce a unique random number for each object, for example.

This value is also the best way to look up information on an object using the dopfield expression function. This value will be -1 if the node does not process objects sequentially (such as the Group DOP).

ALLOBJIDS

This string contains a space separated list of the unique object identifiers for every object being processed by the current node.

ALLOBJNAMES

This string contains a space separated list of the names of every object being processed by the current node.

OBJCT

This value is the simulation time (see variable ST) at which the current object was created.

Therefore, to check if an object was created on the current timestep, the expression `\$ST == \$OBJCT` should always be used. This value will be zero if the node does not process objects sequentially (such as the Group DOP).

OBJCF

This value is the simulation frame (see variable SF) at which the current object was created.

This value is equivalent to using the dopsttoframe expression on the OBJCT variable. This value will be zero if the node does not process objects sequentially (such as the Group DOP).

OBJNAME

This is a string value containing the name of the object being processed.

Object names are not guaranteed to be unique within a simulation. However, if you name your objects carefully so that they are unique, the object name can be a much easier way to identify an object than the unique object identifier, OBJID.

The object name can also be used to treat a number of similar objects (with the same name) as a virtual group. If there are 20 objects named "myobject", specifying `strcmp(\$OBJNAME, "myobject") == 0` in the activation field of a DOP will cause that DOP to operate only on those 20 objects. This value will be the empty string if the node does not process objects sequentially (such as the Group DOP).

DOPNET

This is a string value containing the full path of the current DOP Network. This value is most useful in DOP subnet digital assets where you want to know the path to the DOP Network that contains the node.

## Examples

The following examples include this node.

CountImpacts Example for Count channel node

This example demonstrates how to count impacts from a DOPs simulation using the Count CHOP. Then, using the values from the Count CHOP, we generate copies of a teapot.

DynamicLights Example for Dynamics channel node

This example demonstrates how to use the Dynamics CHOP to extract impact data from a DOPs simulation, and then modify the data to control lights in the scene.

ExtractTransforms Example for Dynamics channel node

This example demonstrates the use of the Dynamics CHOP to pull transformation information out of a DOP simulation and apply it to Objects.

HoldLight Example for Hold channel node

This example uses the Hold CHOP in conjunction with the Dynamics CHOP to hold a light at the position of an impact from a DOPs simulation until a new impact occurs.

Lookup Example for Lookup channel node

This example demonstrates how to use the Lookup CHOP to play animation based on an event, or trigger.

AnimatedActiveState Example for Active Value dynamics node

This example shows how to use the Active Value DOP to animate the Active state of an object. When an object is not active (it is passive), it is not simulated. To keyframe both the active state of an object and its motion while passive, use the RBD Keyframe Active DOP.

AutoFreezeRBD Example for Active Value dynamics node

This example shows a system for automatically detecting when RBD objects achieve a rest state and then turning off their active status. This will freeze them in place reducing computation time and jitter.

LookAt Example for Anchor: Align Axis dynamics node

This example shows how to build a Look At Constraint which keeps a teapot pointed at a bouncing ball. It shows how to build constraints out of anchors and constraint relationships.

BridgeCollapse Example for Apply Relationship dynamics node

This example shows how to use the Apply Relationship DOP to propagate constraints automatically and create an RBD simulation of a collapsing bridge.

ConstrainedTeapots Example for Apply Relationship dynamics node

This example demonstrates how the Apply Relationship DOP can be used to create multiple constraints with the RBD Pin Constraint node.

MutualConstraints Example for Apply Relationship dynamics node

This example demonstrates how to build mutual constraints between two DOP objects using the Apply Relationship node.

SimpleBlend Example for Blend Solver dynamics node

This example demonstrates how to use the Blend Solver. In this case the Blend Solver is used to blend between an RBD solution and a keyframed solution.

BuoyancyForce Example for Buoyancy Force dynamics node

This example shows how to extract a surface field from another object to use as a buoyancy force source.

ClothAttachedDynamic Example for Cloth Object dynamics node

This example shows a piece of cloth attached to a dynamics point on a rigid object.

AnchorPins Example for Constraint Network dynamics node

This example demonstrates how different anchor positions can affect pin constraints.

AngularMotorDenting Example for Constraint Network dynamics node

This example demonstrates how angular motors can be used with pin constraints to create a denting effect.

BreakingSprings Example for Constraint Network dynamics node

This example shows how to use a SOP Solver to break spring constraints in a constraint network that have stretched too far.

Chains Example for Constraint Network dynamics node

This example shows how to create a chain of objects that are connected together by pin constraints.

ControlledGlueBreaking Example for Constraint Network dynamics node

This example shows how to gradually remove glue bonds from a constraint network and control the crumbling of a building.

GlueConstraintNetwork Example for Constraint Network dynamics node

This example shows how to create a constraint network to glue together adjacent pieces of a fractured object. It also shows how primitive attributes such as 'strength' can be used to modify properties of individual constraints in the network.

SoftConstraintNetwork Example for Constraint Network dynamics node

This example shows how to create a simple network of soft constraints, which are used to allow an object to bend before breaking.

SpringToGlue Example for Constraint Network dynamics node

This example shows how to create spring constraints between nearby objects, and then change those constraints to glue constraints during the simulation.

AutoFracturing Example for Copy Objects dynamics node

This example shows how to use the Copy Object DOP, in conjunction with a Multi Solver, to automatically break an RBD object in half whenever it impacts another object.

SimpleCopy Example for Copy Objects dynamics node

This example demonstrates the use of the Copy Objects DOP. A single RBD Object is copied 100 times, and assigned a random initial velocity, and a position based on some grid geometry. These 100 spheres are then dropped onto a ground plane.

PartialRagdolls Example for Crowd Solver dynamics node

This example demonstrates how to set up a partial ragdoll, where a subset of the agent’s joints are simulated as active objects by the Bullet solver and the remaining joints are animated.

PinnedRagdolls Example for Crowd Solver dynamics node

This example demonstrates how to set up constraints to attach a ragdoll to an external object, and how to use motors to drive an active ragdoll with an animation clip.

CacheToDisk Example for File dynamics node

This example shows how to use the File DOP to cache a simulation to disk and read it back in.

FEMSpheres Example for finiteelementsolver dynamics node

This example demonstrates how to use the FEM Solver to deform spheres when they collide with the ground plane. The spheres have particle based animation on them prior to collision with the ground and are swapped to the FEM solver on collision.

BallInTank Example for Fluid Object dynamics node

This example shows an RBD ball being thrown into a tank of liquid.

FluidFeedback Example for Fluid Object dynamics node

This example shows a ball falling into a tank with feedback. This couples the RBD simulation with the Fluid simulation, causing the ball to float rather than sink.

PaintedGrog Example for Fluid Object dynamics node

This example creates a torus of paint which is dropped on the Grog character. The Grog character is then colored according to the paint that hits him. This also shows how to have additional color information tied to a fluid simulation.

GuidedWrinkling Example for FEM Hybrid Object dynamics node

This is a setup for guided wrinkling using the hybrid object. The first sim creates a detailed mesh consisting of both tets and triangles that doesn’t have any wrinkles yet. The second sim is targeted to the animation creates by the first sim and this adds in the wrinkles.

MagnetMetaballs Example for Magnet Force dynamics node

This example demonstrates how to use the Magnet Force node on a group of metaballs to force the fragments of an object outwards at the moment of impact.

SimpleMultiple Example for Multiple Solver dynamics node

This examples demonstrates how to use a Multiple Solver. In this example, the motion of an object is controlled by an RBD Solver while the geometry is modified by a SOP Solver.

This example demonstrates how to couple the Particle Fluid with an RBD object so they both affect each other. The result is a buoyant sphere.

This example demonstrates the use of viscous and elastic forces in a particle-based fluid to generate viscoelastic fluid behaviour. The result is a fluid-like object that tends to resist deformation and retain its shape.

This example demonstrates highly viscous fluid flow using particle-based fluids. Fluids of this form could be used to simulate slowly-flowing fluids such as lava or mud.

ParticleCollisions Example for POP Collision Detect dynamics node

This example demonstrates the use of the POP Collision Detect node to simulate particles colliding with a rotating torus with animated deformations.

BaconDrop Example for POP Grains dynamics node

This example demonstrates dropping slices of bacon onto a torus. It shows how to extract a 2d object from a texture map and how to repeatedly add the same grain-sheet object to DOPs.

VaryingGrainSize Example for POP Grains dynamics node

This example demonstrates interacting grain simulations of very different sizes.

Stack Example for RBD Auto Freeze dynamics node

Teapots are dropped every ten frames onto a ground plane. The RBD AutoFreeze DOP is used to detect and freeze the teapots that have come to rest, stabilizing and speeding up the simulation.

RagdollExample Example for Cone Twist Constraint dynamics node

This sample creates a simple ragdoll using the cone twist constraint between pieces of the ragdoll.

StackedBricks Example for RBD Fractured Object dynamics node

This example shows how to create a large number of RBD objects from a single SOP. It also shows how a velocity point attribute can be used to set the initial motion for the objects.

This example shows how to grab animated key frame data from an RBD Glue object and blend it into a simulation of a cube fragmenting into multiple pieces on impact.

This example shows how one can control the break up of any glued object through the use of the RBD State node.

A torus, composed of spheres, is glued together. An additional sweep plane is defined. Any sphere which ends up on the wrong side of the sweep plane is broken off the torus and left to bounce on its own. This lets the break up of the torus to be controlled over many frames.

This example shows how one can control the break up of any glued object through the use of the RBD State node.

In this version of the choreographed breakup example, a moving plane is used to choreograph the breakup of a fractured tube. As the plane passes each piece, it is allowed to break off from the rest of the tube.

This example uses an RBD projectile to shatter a piece of glass. The glass is made up of simple trangular shards glued together.

This example also demonstrates a situation where using volume based collision detection would not work, and so the objects are treated as infinitely thin surfaces when performing collision detection.

SimpleKeyActive Example for RBD Keyframe Active dynamics node

This example uses the RBD Keyframe Active node to switch from a keyframed animation to an RBD Solver, and back to keyframed animation. This same animation could be created using a Switch Solver or Blend Solver, but this approach is simpler if the only requirement is switching from keyframed to simulated motion for a few RBD Objects.

DeformingRBD Example for RBD Object dynamics node

This example demonstrates a rigid body dynamics simulation involving deforming geometry. A wobbling torus is dropped onto a ground plane.

FrictionBalls Example for RBD Object dynamics node

This example demonstrates the friction parameter on an RBD Object.

RBDInitialState Example for RBD Object dynamics node

This example demonstrates the use of the Initial State parameter of an RBD object.

SimpleRBD Example for RBD Object dynamics node

This example demonstrates a simple rigid body dynamics simulation using the RBD Object DOP. A single sphere is dropped onto a ground plane.

ActivateObjects Example for RBD Packed Object dynamics node

This example shows how to modify the "active" point attribute of an RBD Packed Object to change objects from static to active.

AnimatedObjects Example for RBD Packed Object dynamics node

This example shows how to use animated packed primitives in an RBD Packed Object and set up a transition to active objects later in the simulation.

EmittingObjects Example for RBD Packed Object dynamics node

This example shows how to use a SOP Solver to create new RBD objects and add them to an existing RBD Packed Object.

Chainlinks Example for RBD Pin Constraint dynamics node

In this chain simulation, the individual chain links react to one another in an RBD sim.

InheritVelocity Example for RBD State dynamics node

This example demonstrates the use of the RBD State node to inherit velocity from movement and collision with other objects in a glued RBD fracture simulation.

Simple Example for RBD Visualization dynamics node

This example demonstrates a simple rigid body dynamics simulation using the RBD Object DOP. A single sphere is dropped onto a ground plane. It adds in an RBD Visualization DOP to show the impact forces that are applied as a result of the collision.

ReferenceFrameForce Example for Reference Frame Force dynamics node

An RBD vase filled with water performs the water simulation in the vase’s reference frame.

RippleGrid Example for Ripple Solver dynamics node

This example demonstrates how to use the Ripple Solver and Ripple Object nodes. Bulge SOPs are used to deform a grid to create initial geometry and rest geometry for the Ripple Object which is then piped into the Ripple Solver.

Freeze Example for Script Solver dynamics node

This example uses the Script Solver to remove objects from the simulation once they fall below a certain threshold velocity. This technique can be used to speed up simulations that are known to settle down to a static arrangement.

ScalePieces Example for Script Solver dynamics node

This example demonstrates how to use the Script Solver node to scale fractured pieces of an RBD sim over time.

SumImpacts Example for Script Solver dynamics node

This example uses the Script Solver and SOP Solver to change the color of RBD objects based on the total impact energy applied to the object at each timestep.

DelayedSmokeHandoff Example for Smoke Object dynamics node

This example shows a way to turn an RBD into smoke a certain number of frames after the RBD object has hit something.

RBDtoSmokeHandoff Example for Smoke Object dynamics node

This example shows a way to turn an RBD object into smoke. It uses multiple different colored smoke fields inside the same smoke object.

VolumePreservingSolid Example for FEM Solid Object dynamics node

This solid object has a strong volume-preserving force (e.g. flesh). The effect of the volume-preserving force is clearly visible when the object hits the ground plane.

VisualizeImpacts Example for SOP Solver dynamics node

An example that shows how you can visualize impact data in an RBD simulation by using a SOP Solver to add custom guide geometry to the RBD Objects.

This example has three toruses falling on a grid with green lines showing the position and magnitude of impacts. The force visualization is added as ancillary geometry data to the actual toruses, so the RBD Solver is entirely unaware of the effect. The SOP Solver could also be used as an independent SOP network to extract impact visualization from an RBD Object.

StaticBalls Example for Static Object dynamics node

This example uses static object nodes in an RBD simulation of a grid falling and bouncing off three spheres before it hits the ground.

VellumSmokeSheet Example for Vellum Solver dynamics node

This example demonstrates combining a Vellum simulation with a Smoke simulation to create a billowing sheet.

FractureExamples Example for Voronoi Fracture Solver dynamics node

This example actually includes eight examples of ways that you can use voronoi fracturing in Houdini. In particular, it shows how you can use the Voronoi Fracture Solver and the Voronoi Fracture Configure Object nodes in your fracture simulations. Turn on the display flags for these examples one at a time to play the animation and dive down into each example to examine the setup.

SimpleVortex Example for Vortex Force dynamics node

This example uses a few balls to visualize the force generated by a Vortex Force DOP.

CompressedSpring Example for Wire Object dynamics node

This example demonstrates how an initial pose may be specified for a wire object.

Here is an example of accumulating and fading an attribute

ConnectedBalls Example for Connectivity geometry node

This example demonstrates how to use an attribute generated by the Connectivity SOP to color different pieces of geometry from a DOPs simulation.

LowHigh Example for Dop Import geometry node

This example shows how to create a low res - high res set up to support RBD objects. The two main methods are to reference copy the DOP Import SOP and feed in the high res geometry or to use point instancing with an Instance Object.

ProxyGeometry Example for Dop Import geometry node

This example demonstrates a technique of using the DOP Import SOP to allow the use of proxy geometry in a DOP simulation. One set of geometries are used in the simulation, then the transform information for those objects is applied to higher resolution versions of the geometry.

dopimportrecordsexample Example for DOP Import Records geometry node

This example demonstrates a creating points for each matching record in the DOP simulation. This lets us create a point for each object or a point for each impact.

ExtractAnimatedTransform Example for Extract Transform geometry node

This example shows how to create packed primitives with animated transforms from deforming geometry that represents rigid motion. The result is ideal for colliders in a rigid body simulation.

glueclusterexample Example for Glue Cluster geometry node

This example shows how to use the gluecluster SOP and glue constraint networks to cluster together the pieces of a voronoi fracture. This allows clustering to be used with Bullet without introducing concave objects.

PartitionBall Example for Partition geometry node

This example demonstrates how to break geometry in a DOPs simulation using the Partition SOP to determine the DOP Objects.

PlateBreak Example for TimeShift geometry node

This example demonstrates how to use the TimeShift SOP to achieve a slow-motion effect during a fracture simulation.

TransformFracturedPieces Example for Transform Pieces geometry node

This example demonstrates using the Transform Pieces SOP to transform high-resolution geometry from the results a DOPs rigid-body fracture simulation that used low-resolution geometry.

# Dynamics nodes

• Marks a simulation object as active or passive.

• Creates affector relationships between groups of objects.

• Blends between a set of animation clips based on the agent’s turn rate.

• Layers additional animation clips onto an agent.

• Chooses an object/position for the head of an agent to look at.

• Moves the head of an agent to look at a target.

• Adapts the legs of an agent to conform to terrain and prevent the feet from sliding.

• Adapts the legs of a biped agent to conform to terrain.

• Project the agent/particle points onto the terrain

• Defines an orientation that aligns an axis in object space with a second axis defined by the relative locations of two positional anchors.

• Defines multiple points, specified by their number or group, on the given geometry of a simulation object.

• Defines orientations based on multiple points on the given geometry of a simulation object.

• Defines a position by looking at the position of a point on the geometry of a simulation object.

• Defines an orientation by looking at a point on the geometry of a simulation object.

• Defines a position by looking at the position of a point on the geometry of a simulation object.

• Defines an orientation by looking at a point on the geometry of a simulation object.

• Defines a position by looking at the position of a particular UV coordinate location on a primitive.

• Defines a position by specifying a position in the space of some simulation object.

• Defines an orientation by specifying a rotation in the space of some simulation object.

• Defines multiple attachment points on a polygonal surface of an object.

• Defines a position by specifying a position in world space.

• Defines an orientation by specifying a rotation in world space.

• Attaches data to simulation objects or other data.

• Creates relationships between simulation objects.

• Attaches the appropriate data for Bullet Objects to an object.

• Sets and configures an Bullet Dynamics solver.

• Applies a uniform force to objects submerged in a fluid.

• Constrains a set of points on a cloth object to the surface of a Static Object.

• Attaches the appropriate data for Cloth Objects to an object.

• Defines the mass properties.

• Defines the physical material for a deformable surface.

• Defines the internal cloth forces.

• Creates a Cloth Object from SOP Geometry.

• Creates a Cloth Object from SOP Geometry.

• Defines the plasticity properties.

• Constrains part of the boundary of a cloth object to the boundary of another cloth object.

• Defines how cloth uses target.

• Defines a way of resolving collisions involving a cloth object and DOPs objects with volumetric representations (RBD Objects, ground planes, etc.)

• Constrains an object to remain a certain distance from the constraint, and limits the object’s rotation.

• Constrains pairs of RBD objects together according to a polygon network.

• Defines a set of constraints based on geometry.

• Visualizes the constraints defined by constraint network geometry.

• Creates multiple copies of the input data.

• Sets and configures a Copy Data Solver.

• Mimics the information set by the Copy Object DOP.

• Defines a Crowd Fuzzy Logic

• Creates a crowd object with required agent attributes to be used in the crowd simulation.

• Updates agents according to their steer forces and animation clips.

• Update crowd agents based on the custom steerforces and adjusting animation playback of clips

• Defines a Crowd State

• Defines a Crowd State.

• Defines a transition between crowd states.

• Defines a transition between crowd states.

• Defines a Crowd Trigger

• Defines a Crowd Trigger

• Combines multiple crowd triggers to build a more complex trigger.

• Adds a data only once to an object, regardless of number of wires.

• Deletes both objects and data according to patterns.

• Applies force and torque to objects that resists their current direction of motion.

• Defines how the surrounding medium affects a soft body object.

• Controls Embedded Geometry that can be deformed along with the simulated geometry in a finite element simulation.

• Creates an Empty Data for holding custom information.

• Creates an Empty Object.

• Constrains points of a solid object or a hybrid object to points of another DOP object.

• Creates an FEM Hybrid Object from SOP Geometry.

• Constrains regions of a solid object or a hybrid object to another solid or hybrid object.

• Creates a simulated FEM solid from geometry.

• Sets and configures a Finite Element solver.

• Constrains an FEM object to a target trajectory using a hard constraint or soft constraint.

• Attaches the appropriate data for Particle Fluid Objects to become a FLIP based fluid.

• Evolves an object as a FLIP fluid object.

• Applies forces on the objects as if a cone-shaped fan were acting on them.

• Fetches a piece of data from a simulation object.

• Applies forces to an object using some piece of geometry as a vector field.

• Creates a vortex filament object from SOP Geometry.

• Evolves vortex filament geometry over time.

• Imports vortex filaments from a SOP network.

• Saves and loads simulation objects to external files.

• Allows a finite-element object to generate optional output attributes.

• Attaches the appropriate data for Fluid Objects to an object.

• Applies forces to resist the current motion of soft body objects relative to a fluid.

• Attaches the appropriate data for Fluid Objects to an object.

• A solver for Sign Distance Field (SDF) liquid simulations.

• A microsolver that adjusts an internal coordinate system attached to fluid particles in a particle fluid simulation.

• A microsolver that advects fields and geometry by a velocity field.

• A microsolver that advects fields and geometry by a velocity field using OpenCL acceleration.

• A microsolver that advects fields and geometry by a velocity field.

• A microsolver that computes analytic property of fields.

• A microsolver that swaps geometry attributes.

• A microsolver that blends the density of two fields.

• A microsolver that blurs fields.

• A microsolver that determines the collision field between the fluid field and any affector objects.

• A microsolver that builds a mask for each voxel to show the presence or absence of relationships between objects.

• A microsolver that calculates an adhoc buoyancy force and updates a velocity field.

• A microsolver that performs general calculations on a pair of fields.

• A microsolver that detects collisions between particles and geometry.

• A microsolver that applies a combustion model to the simulation.

• A microsolver that adjusts an SDF according to surface markers.

• A microsolver that computes the cross product of two vector fields.

• A DOP node that creates forces generated from a curve.

• A microsolver that scales down velocity, damping motion.

• A microsolver that diffuses a field or point attribute.

• A microsolver that dissipates a field.

• Adds detail at a certain scale by applying "disturbance" forces to a scalar or vector field.

• A microsolver that runs once for each matching data.

• A microsolver that embeds one fluid inside another.

• A microsolver that enforces boundary conditions on a field.

• A microsolver that equalizes the density of two fields.

• A microsolver that equalizes the volume of two fields.

• A microsolver that evaluates the external DOPs forces for each point in a velocity field and updates the velocity field accordingly.

• A microsolver that extrapolates a field’s value along an SDF.

• A microsolver that creates a feathered mask out of a field.

• A microsolver that calculates and applies feedback forces to collision geometry.

• A data node that fetches the fields needed to embed one fluid in another.

• Runs CVEX on a set of fields.

• Runs CVEX on a set of fields.

• A microsolver that copies the values of a field into a point attribute on geometry.

• A microsolver that defragments geometry.

• A microsolver that creates a signed distance field out of geometry.

• Blends a set of SOP volumes into a set of new collision fields for the creation of a guided simulation.

• A microsolver that copies Impact data onto point attributes.

• A microsolver that applies forces to a particle fluid system.

• A microsolver that solves its subsolvers at a regular interval.

• A microsolver that clamps a field within certain values.

• A microsolver that keeps particles within a box.

• A microsolver that combines multiple fields or attributes together.

• A microsolver that adaptively sharpens a field.

• A microsolver that looksup field values according to a position field.

• A microsolver that rebuilds fields to match in size and resolution to a reference field.

• A microsolver that arbitrary simulation data between multiple machines.

• A microsolver that exchanges boundary data between multiple machines.

• A microsolver that exchanges boundary data between multiple machines.

• A microsolver that balances slices data between multiple machines.

• A microsolver that exchanges boundary data between multiple machines.

• Executes the provided kernel with the given parameters.

• A microsolver that counts the number of particles in each voxel of a field.

• A microsolver that computes pairwise collision forces between particles that represent instanced spheres.

• A microsolver that moves particles to lie along a certain isosurface of an SDF.

• A microsolver that separates adjacent particles by adjusting their point positions..

• A microsolver that copies a particle system’s point attribute into a field.

• A microsolver that converts a particle system into a signed distance field.

• A microsolver that removes the divergent components of a velocity field.

• A microsolver that removes the divergent components of a velocity field using a multi-grid method.

• A microsolver that removes the divergent components of a velocity field.

• A microsolver that reduces a field to a single constant field .

• A microsolver that reduces surrounding voxels to a single value.

• A microsolver that reinitializes a signed distance field while preserving the zero isocontour.

• A microsolver that repeatedly solves its input.

• A microsolver that changes the size of fields.

• A microsolver that resizes a fluid to match simulating fluid bounds

• A microsolver that initializes a rest field.

• A microsolver that converts an SDF field to a Fog field.

• A microsolver that computes the forces to treat the fluid simulation as sand rather than fluid.

• A microsolver that seeds marker particles around the boundary of a surface.

• A microsolver that seeds particles uniformly inside a surface.

• Applies a Shredding Force to the velocity field specified.

• A microsolver that computes slice numbers into an index field.

• Adjusts a fluid velocity field to match collision velocities.

• A microsolver that calculates the forces imparted by a strain field.

• A microsolver that updates the strain field according to the current velocity field.

• A microsolver that substeps input microsolvers.

• A microsolver that snaps a surface onto a collision surface.

• A microsolver that calculates a surface tension force proportional to the curvature of the surface field.

• A microsolver that applies a force towards a target object.

• Modifies the temperature of a FLIP over time.

• Applies Turbulence to the specified velocity field.

• Up-scales and/or modifies a smoke, fire, or liquid simulations.

• A microsolver that reorients geometry according to motion of a velocity field.

• A microsolver that applies viscosity to a velocity field.

• A microsolver that seeds flip particles into a new volume region.

• Remaps a field according to a ramp.

• Applies a confinement force on specific bands of sampled energy.

• Applies a vortex confinement force to a velocity field.

• Applies a confinement force on specific bands of sampled energy.

• A microsolver that applies forces to a velocity field or geometry according to vorticle geometry.

• A DOP node that adds the appropriately formatted data to represent vorticles.

• A DOP node that recycles vorticles by moving them to the opposite side of the fluid box when they leave.

• A microsolver that performs a wavelet decomposition of a field.

• A microsolver that applies a wind force.

• Runs CVEX on geometry attributes.

• Runs a VEX snippet to modify attribute values.

• Applies a gravity-like force to objects.

• Creates a ground plane suitable for RBD or cloth simulations.

• Creates simulation object groups.

• Defines a constraint relationship that must always be satisfied.

• Attaches the appropriate data for Hybrid Objects to an object.

• Stores filtered information about impacts on an RBD object.

• Applies an impulse to an object.

• Creates an index field.

• Visualizes an index field.

• Creates DOP Objects according to instance attributes

• Marks a simulation object as intangible or tangible.

• Stores the name of the scene level object source for this DOP object.

• Apply forces on objects using a force field defined by metaballs.

• Creates a matrix field.

• Visualizes a matrix field.

• Merges multiple streams of objects or data into a single stream.

• Modifies or creates options on arbitrary data.

• Defines an object’s position, orientation, linear velocity, and angular velocity.

• Unified visualization of multiple fields.

• A DOP that transfers arbitrary simulation data between multiple machines.

• Does nothing.

• Creates position information from an object’s transform.

• Serves as the end-point of the simulation network. Has controls for writing out sim files.

• Uses vortex filaments to move particles.

• A POP node that uses velocity volumes to move particles.

• A POP node that attracts particles to positions and geometry.

• A POP node that copies volume values into a particle attribute.

• A POP node that resets the stopped attribute on particles, waking them up.

• A POP node that applies a force around an axis.

• A POP node that reacts to collisions.

• A POP node that detects and reacts to collisions.

• A POP node marks particles to ignore implicit collisions.

• A POP node that colors particles.

• A POP node that creates forces generated from a curve.

• A POP node that applies drag to particles.

• A POP node that applies drag to the spin of particles.

• A POP node that applies a conical fan wind to particles.

• A POP node that creates a simple fireworks system.

• A POP node that floats particles on the surface of a liquid simulation.

• A POP node that applies a flocking algorithm to particles.

• Controls local density by applying forces between nearby particles.

• A POP node that applies forces to particles.

• A POP node that applies sand grain interaction to particles.

• A POP node that groups particles.

• A POP node that sets up the instancepath for particles.

• A POP node that applies forces between particles.

• A POP node that kills particles.

• A POP node that limits particles.

• A POP node that applies forces within the particle’s frame.

• A POP solver that generates particles at a point.

• A POP node makes a particle look at a point.

• A POP node that applies forces according to metaballs.

• Converts a regular particle system into a dynamic object capable of interacting correctly with other objects in the DOP environment.

• A POP node that sets various common attributes on particles.

• A POP node that sets attributes based on nearby particles.

• A POP Node that generates particles from incoming particles.

• A POP node that creates a spongy boundary.

• A POP solver updates particles according to their velocities and forces.

• A POP node that generates particles from geometry.

• A POP node that sets the speed limits for particles.

• A POP node that sets the spin of particles..

• A POP node that uses the vorticity of velocity volumes to spin particles.

• A POP node that sets the sprite display for particles.

• Applies force to agents/particles to align them with neighbors.

• Applies anticipatory avoidance force to agents/particles to avoid potential future collisions with other agents/particles.

• Applies forces to agents/particles to bring them closer to their neighbors.

• Applies forces to agents/particles calulated using a VOP network.

• Applies force to agents/particles to avoid potential collisions with static objects.

• Applies force to agents/particles to avoid potential collisions with static objects.

• Applies force to agents/particles according to directions from a path curve.

• Applies force to agents/particles to move them toward a target position.

• Apply force to agents/particles to move them apart from each other.

• Used internally in the crowd solver to integrate steering forces.

• Used internally in the crowd solver to integrate custom steering forces.

• Constrains agent velocity to only go in a direction within a certain angle range of its current heading, to prevent agents from floating backward.

• Apply forces to agents/particles to create a random motion.

• A POP node that creates a new stream of particles.

• A POP node that applies torque to particles, causing them to spin.

• Runs CVEX on a particle system.

• A POP node that directly changes the velocity of particles.

• A POP node that applies wind to particles.

• Runs a VEX snippet to modify particles.

• Emits particles into a particle fluid simulation.

• Removes fluid particles that flow inside of a specified boundary from a simulation.

• Visualizes particles.

• Creates simulation object groups based on an expression.

• Defines the base physical parameters of DOP objects.

• Applies a force to an object from a particular location in space.

• Creates position information from a point on some SOP geometry.

• Associates a position and orientation to an object.

• Sets and configures a Pyro solver. This solver can be used to create both fire and smoke.

• Constrains an RBD object to a certain orientation.

• Constrains an RBD object to have a certain orientation, but with a set amount of springiness.

• Automatically freezes RBD Objects that have come to rest

• Attaches the appropriate data for RBD Objects to an object.

• Creates a number of RBD Objects from SOP Geometry. These individual RBD Objects are created from the geometry name attributes.

• Constrains an object to two constraints, creating a rotation similar to a hinge or a trapeze bar.

• Creates an RBD Object from SOP Geometry.

• Creates a single DOP object from SOP Geometry that represents a number of RBD Objects.

• Constrains an RBD object a certain distance from the constraint.

• Creates a simulation object at each point of some source geometry, similarly to how the Copy surface node copies geometry onto points.

• Sets and configures a Rigid Body Dynamics solver.

• Constrains an object to remain a certain distance from the constraint, with a set amount of springiness.

• Alters the state information for an RBD Object.

• Saves the state of a DOP network simulation into files.

• Applies forces to an object according to the difference between two reference frames.

• Sets and configures a Rigid Body Dynamics solver.

• Attaches the appropriate data for Ripple Objects to an object.

• Creates an object from existing geometry that will be deformed with the ripple solver.

• Animates wave propagation across Ripple Objects.

• Creates a signed distance field representation of a piece of geometry that can be used for collision detection.

• A microsolver that performs general calculations on a pair consisting of a DOP field and a SOP volume/VDB.

• Creates a scalar field from a SOP Volume.

• Creates a vector field from a SOP Volume Primitive.

• Creates a scalar field.

• Visualizes a scalar field.

• Defines the internal seam angle.

• Defines the mass density of a Cloth Object.

• Divides a particle system uniformly into multiple slices along a line.

• Specifies a cutting plane to divide a particle system into two slices for distributed simulations.

• Constrains an object to rotate and translate on a single axis, and limits the rotation and translation on that axis.

• Attaches the appropriate data for Smoke Objects to an object.

• Creates an Smoke Object from SOP Geometry.

• Sets and configures a Smoke solver. This is a slightly lower-level solver that is the basis for the Pyro solver.

• Constrains a set of points on a soft body object to a certain position using a hard constraint or soft constraint.

• Constrains a point on a soft body object to a certain position.

• Constrains a point on a soft body to a certain position, with a set amount of springiness.

• Defines how a soft body object responds to collisions.

• Defines how a Soft Body Object responds to collisions.

• Defines how a Soft Body Object responds to collisions.

• Defines how a Soft Body Object responds to collisions.

• Allows the user to import the rest state from a SOP node.

• Sets and configures a Soft Body solver.

• Defines the strengths of the soft constraint on a soft body object.

• Controls the anisotropic behavior of a Solid Object.

• Attaches the appropriate data for Solid Objects to an object.

• Defines the mass density of a Solid Object.

• Defines how a Solid Object reacts to strain and change of volume.

• Creates a Solid Object from SOP Geometry.

• This builds a tree of spheres producing bounding information for an edge cloud.

• This builds a tree of spheres producing bounding information for a point cloud.

• Splits an incoming object stream into as many as four output streams.

• Creates a Static Object from SOP Geometry.

• Allows you to inspect the behavior of a static object in the viewport.

• Control the thickness of the object that collides with cloth.

• Passes one of the input object or data streams to the output.

• Creates a Terrain Object from SOP Geometry.

• Defines a way of resolving collisions between two rigid bodies.

• Applies a uniform force and torque to objects.

• Applies forces on the objects according to a VOP network.

• Creates a vector field.

• Visualizes a vector field.

• Modifies common Vellum Constraint properties during a Vellum solve.

• Microsolver to create Vellum constraints during a simulation.

• Creates a DOP Object for use with the Vellum Solver.

• Blends the current rest values of constraints with a rest state calculated from the current simulation or external geometry.

• Sets and configures a Vellum solver.

• A Vellum node that creates Vellum patches.

• Applies an impulse to an object.

• A microsolver to create soft references to visualizers on itself.

• Imports SOP source geometry into smoke, pyro, and FLIP simulations.

• Defines a way of resolving collisions involving two rigid bodies with volume.

• Attaches the appropriate data to make an object fractureable by the Voronoi Fracture Solver

• Defines the parameters for dynamic fracturing using the Voronoi Fracture Solver

• Dynamically fractures objects based on data from the Voronoi Fracture Configure Object DOP

• Applies a vortex-like force on objects, causing them to orbit about an axis along a circular path.

• Creates a Whitewater Object that holds data for a whitewater simulation.

• Creates a Whitewater Object that holds data for a whitewater simulation.

• Sets and configures a Whitewater Solver.

• Sets and configures a Whitewater solver.

• Applies forces to resist the current motion of objects relative to a turbulent wind.

• Constrains a wire point’s orientation to a certain direction.

• Constrains a wire point’s orientation to a certain direction, with a set amount of springiness.

• Attaches the appropriate data for Wire Objects to an object.

• Defines the elasticity of a wire object.

• Constraints a wire point to a certain position and direction.

• Creates a Wire Object from SOP Geometry.

• Defines the physical parameters of a wire object.

• Defines the plasticity of a wire object.

• Sets and configures a Wire solver.

• Defines a way of resolving collisions involving a wire object and DOPs objects with volumetric representations.

• Defines a way of resolving collisions between two wires.